設(shè)點(diǎn)M,N分別是曲線ρ+2sinθ=0和ρsin(θ+
π
4
)=
2
2
上的動(dòng)點(diǎn),求點(diǎn)M,N間的最小距離.
考點(diǎn):簡(jiǎn)單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:把極坐標(biāo)方程化為直角坐標(biāo)方程,數(shù)形結(jié)合可得以MNmin等于A到直線的距離減去半徑,計(jì)算求得結(jié)果.
解答: 解:方程ρ+2sin θ=0化為直角坐標(biāo)方程得x2+(y+1)2=1,
方程ρsin(θ+
π
4
)=
2
2
化為直角坐標(biāo)方程得x+y-1=0,
如圖所示,設(shè)圓x2+(y+1)2=1的圓心為A(0,-1),則當(dāng)AN垂直于直線x+y-1=0時(shí),AN最小,
AN與圓A交于點(diǎn)M,則MN最小.
因?yàn)锳(0,-1),所以MNmin等于A到直線的距離減去半徑,即
|0-1-1|
2
-1=
2
-1,
故點(diǎn)M,N間的最小距離是
2
-1.
點(diǎn)評(píng):本題主要考查把極坐標(biāo)方程化為直角坐標(biāo)方程的方法,點(diǎn)到直線的距離公式的應(yīng)用,直線和圓的位置關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
x
sin2x
,x∈(-
π
2
,0)∪(0,
π
2
)的圖象可能是下列圖象中的( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(1,1),
b
=(1,-2)
(1)求
a
+2
b
;
(2)若|
c
|=1,且
a
-
c
a
-2
c
垂直,求
a
c
的夾角θ的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從集合{(x,y)|x2+y2≤4,x∈R,y∈R}內(nèi)任選一個(gè)元素(x,y),則x,y滿足x+y≥2的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(sinx,cosx),
n
=(
3
sinx,sinx),函數(shù)f(x)=
m
n

(1)求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)求f(x)在區(qū)間[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某商場(chǎng)對(duì)每天進(jìn)店的人數(shù)和商品銷售進(jìn)行統(tǒng)計(jì)對(duì)比,得到如下表格:
人數(shù)xi   10  15  20  25  303540
件數(shù)yi   4   7  12  15  202327
其中i=1,2,3,4,5,6,7
(1)求回歸直線方程(結(jié)果保留到小數(shù)點(diǎn)后兩位)
a=
.
y
-b
.
x
,b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
;或a=
.
y
-b
.
x
,b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x

參考數(shù)據(jù):
7
i=1
xiyi=3245,
.
x
=25,
.
y
=15.43,
7
i=1
xi2=5075,7
.
x
2=4375,7
.
x
.
y
=2700
(2)預(yù)測(cè)進(jìn)店人數(shù)為80人時(shí),商品銷售的件數(shù)(結(jié)果保留整數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+(1-a)x2-a(a+2)x+b,若函數(shù)f(x)在區(qū)間(-1,1)上不單調(diào),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=m(x-2m)(x+m+3),g(x)=x-1,若同時(shí)滿足條件:①對(duì)任意實(shí)數(shù)x,有f(x)<0或g(x)<0②當(dāng)x<-4時(shí),f(x)•g(x)<0,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
,
b
滿足:|
a
|=1,|
b
|=1,|
a
+
b
|=
3
,則
a
a
+2
b
夾角的余弦值為:
 

查看答案和解析>>

同步練習(xí)冊(cè)答案