17.偶函數(shù)f(x)在區(qū)間[1,4]上為減函數(shù),則它在區(qū)間[-4,-1]上(  )
A.是增函數(shù)B.是減函數(shù)C.無法確定D.不具備單調(diào)性

分析 根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系進(jìn)行判斷即可.

解答 解:∵偶函數(shù)f(x)的圖象關(guān)于y軸對(duì)稱,
∴若f(x)在區(qū)間[1,4]上為減函數(shù),則在區(qū)間[-4,-1]上是增函數(shù),
故選:A

點(diǎn)評(píng) 本題主要考查函數(shù)單調(diào)性的判斷,利用函數(shù)奇偶性和單調(diào)性的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{(x-1)|x|}{|{x}^{2}-1|}$.
(1)寫出函數(shù)定義域;
(2)在直角坐標(biāo)系中畫出函數(shù)f(x)的圖象的大致形狀;
(3)根據(jù)圖形,指出函數(shù)的奇偶性,函數(shù)單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知sin($\frac{π}{3}$+α)+sinα=$\frac{4\sqrt{3}}{5}$,則sin(α+$\frac{7π}{6}$)的值是-$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.同時(shí)擲兩枚質(zhì)地均勻的骰子,所得點(diǎn)數(shù)之和為6的概率等于( 。
A.$\frac{1}{12}$B.$\frac{5}{36}$C.$\frac{1}{7}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知c>0,設(shè)命題p:函數(shù)y=cx為減函數(shù).命題q:函數(shù)f(x)=cx2-x+c在區(qū)間$[{\frac{1}{2},2}]$上恒大于零.若命題“p∨q”為真命題,命題“p∧q”為假命題,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)a>0,b>0.若3a•3b=3,則$\frac{1}{a}+\frac{1}$的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知集合A={x|x2-x>0},B={x|x+a≥0},若A∪B=R,則實(shí)數(shù)a的取值范圍是(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x2+4x+3
(1)若g(x)=f(x)+cx為偶函數(shù),求c
(2)利用單調(diào)性定義證明:函數(shù)f(x)在區(qū)間[-2,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)是定義域?yàn)镽上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x2+2x.
(1)求f(x)的解析式;
(2)若不等式f(t-2)+f(2t+1)>0成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案