【題目】已知函數(shù),.

(1)討論的單調(diào)性;

(2)若有兩個極值點,,且,證明:.

【答案】(1)見解析.(2)見解析.

【解析】分析:(1)先求導數(shù),再根據(jù)二次方程 =0根得情況分類討論:當時,.∴上單調(diào)遞減. 當時,根據(jù)兩根大小再分類討論對應單調(diào)區(qū)間, (2)先化簡不等式m,再利用導數(shù)研究,單調(diào)性,得其最小值大于-1,即證得結果.

詳解:(1)由,得

,.

,.

時,即時,,.

上單調(diào)遞減.

時,即時,

,得,.

時,,

上,,在上,,

上單調(diào)遞增,在上單調(diào)遞減.

綜上,當時,上單調(diào)遞減,

時,上單調(diào)遞減,在上單調(diào)遞增,

時,上單調(diào)遞增,在上單調(diào)遞減.

(2)∵有兩個極值點,,且

∴由(1)知有兩個不同的零點,,

,且,此時,,

要證明,只要證明.

,∴只要證明成立.

,∴.

,,

時,

上單調(diào)遞增,

,即,

有兩個極值點,且時,.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某餐廳通過查閱了最近5次食品交易會參會人數(shù) (萬人)與餐廳所用原材料數(shù)量 (袋),得到如下統(tǒng)計表:

第一次

第二次

第三次

第四次

第五次

參會人數(shù) (萬人)

13

9

8

10

12

原材料 (袋)

32

23

18

24

28

(1)根據(jù)所給5組數(shù)據(jù),求出關于的線性回歸方程.

(2)已知購買原材料的費用 (元)與數(shù)量 (袋)的關系為,

投入使用的每袋原材料相應的銷售收入為700元,多余的原材料只能無償返還,據(jù)悉本次交易大會大約有15萬人參加,根據(jù)(1)中求出的線性回歸方程,預測餐廳應購買多少袋原材料,才能獲得最大利潤,最大利潤是多少?(注:利潤銷售收入原材料費用).

參考公式: .

參考數(shù)據(jù): , .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】閱讀如圖所示的程序框圖,若輸入的k=10,則該算法的功能是(

A.計算數(shù)列{2n1}的前10項和
B.計算數(shù)列{2n1}的前9項和
C.計算數(shù)列{2n﹣1}的前10項和
D.計算數(shù)列{2n﹣1}的前9項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=xax+(a1),

1)討論函數(shù)的單調(diào)性;

2)證明:若,則對任意xx,xx,有。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某醫(yī)學院讀書協(xié)會欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關系,該協(xié)會分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如圖所示的頻率分布直方圖.該協(xié)會確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.

(Ⅰ)已知選取的是1月至6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出就診人數(shù)關于晝夜溫差的線性回歸方程;

(Ⅱ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問(Ⅰ)中該協(xié)會所得線性回歸方程是否理想?

參考公式:回歸直線的方程,

其中,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對某種書籍的成本費(元)與印刷冊數(shù)(千冊)的數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.

表中.

為了預測印刷20千冊時每冊的成本費,建立了兩個回歸模型:.

(1)根據(jù)散點圖,擬認為選擇哪個模型預測更可靠?(只選出模型即可)

(2)根據(jù)所給數(shù)據(jù)和(1)中的模型選擇,求關于的回歸方程,并預測印刷20千冊時每冊的成本費.

附:對于一組數(shù)據(jù),其回歸方程中斜率和截距的最小二乘估計公式分別為:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某次測試中,卷面滿分為100分,考生得分為整數(shù),規(guī)定60分及以上為及格.某調(diào)研課題小組為了調(diào)查午休對考生復習效果的影響,對午休和不午休的考生進行了測試成績的統(tǒng)計,數(shù)據(jù)如下表:

分數(shù)段

0~39

40~49

50~59

60~69

70~79

80~89

90~100

午休考生人數(shù)

29

34

37

29

23

18

10

不午休考生人數(shù)

20

52

68

30

15

12

3

(1)根據(jù)上述表格完成下列列聯(lián)表:

及格人數(shù)

不及格人數(shù)

合計

午休

不午休

合計

(2)判斷“能否在犯錯誤的概率不超過0.010的前提下認為成績及格與午休有關”?

0.10

0.05

0.010

0.001

2.706

3.841

6.635

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過曲線的左焦點且和雙曲線實軸垂直的直線與雙曲線交于點A,B,若在雙曲線的虛軸所在的直線上存在—點C,使得,則雙曲線離心率e的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位實行職工值夜班制度,已知名職工每星期一到星期五都要值一次夜班,且沒有兩人同時值夜班,星期六和星期日不值夜班,若昨天值夜班,從今天起至少連續(xù)天不值夜班,星期四值夜班,則今天是星期幾(

A. B. C. D.

查看答案和解析>>

同步練習冊答案