16.不等式|x+1|-|x-5|<4的解集為( 。
A.(-∞,4)B.(-∞,-4)C.(4,+∞)D.(-4,+∞)

分析 通過討論x的范圍,求出各個(gè)階段上的x的范圍,取并集即可.

解答 解:x≥5時(shí):
x+1-x+5=6>4,不等式無解;
-1<x<5時(shí):
x+1+x-5<4,解得:x<4;
x≤-1時(shí):
-x-1+x-5<4恒成立.
故不等式的解集是(-∞,4).

點(diǎn)評 本題考查了絕對值不等式問題,考查分類討論思想,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=Asin2(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的圖象經(jīng)過最高點(diǎn)(1,2),且相鄰兩對稱軸間的距離為2.
(1)求函數(shù)f(x)的表達(dá)式;
(2)若函數(shù)g(x)=f(x)+f(1-x),x∈[-3,3],求使得g(t)=3成立的實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x-1,x≥0}\\{\frac{1}{x},x<0}\end{array}\right.$,若f(a)≤a,則實(shí)數(shù)a的取值范圍是a≥-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ax+$\frac{a-1}{x}$+(1-2a)(a>0)
(1)若f(x)≥lnx在[1,+∞)上恒成立,求a的取值范圍;
(2)證明:1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$>ln(n+1)+$\frac{n}{2(n+1)}$(n≥1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AF=BF,EC∥FD,F(xiàn)D⊥底面ABCD,M是AB的中點(diǎn).
(1)求證:平面CFM⊥平面BDF;
(2)點(diǎn)N在CE上,EC=2,F(xiàn)D=3,當(dāng)CN為何值時(shí),MN∥平面BEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.為了增強(qiáng)環(huán)保意識,某校從男生中隨機(jī)制取了60人,從女生中隨機(jī)制取了50人參加環(huán)保知識測試,統(tǒng)計(jì)數(shù)據(jù)如表所示,經(jīng)計(jì)算K2=7.822,則環(huán)保知識是否優(yōu)秀與性別有關(guān)的把握為( 。
優(yōu)秀非優(yōu)秀總計(jì)
男生402060
女生203050
總計(jì)6050110
附:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1}+{n}_{2}+{n}_{+1}{n}_{+2}}$
P(K2≥k)0.5000.1000.0500.0100.001
k0.4552.7063.8416.63510.828
A.90%B.95%C.99%D.99.9%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.等比數(shù)列{an}的前n項(xiàng)和為Sn,已知S4=a2+a3+9a1,a5=32,則a1=( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}-{x^2}+2x,x≤0\\ ln(x+1),x>0\end{array}\right.$,若對x∈R都有|f(x)|≥ax,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,0]B.[-2,0]C.[-2,1]D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,△ABC中,∠C=90°,AC=6,BC=8,點(diǎn)D從點(diǎn)C出發(fā),以每秒1個(gè)單位的速度沿著CB向點(diǎn)B運(yùn)功,△ADE和△ADC關(guān)于AD成軸對稱,連接BE,設(shè)點(diǎn)D運(yùn)動時(shí)間為t秒.
(1)當(dāng)t為何值時(shí),△BDE是以BE為底的等腰三角形?
(2)當(dāng)t為何值時(shí),用BD,DE、AD的長度作為線段所圍成的三角形是以BD為直角邊的直角三角形?

查看答案和解析>>

同步練習(xí)冊答案