18.(1)4a${\;}^{\frac{2}{3}}$b${\;}^{-\frac{1}{3}}$÷(-$\frac{2}{3}$a${\;}^{-\frac{1}{3}}$b${\;}^{-\frac{1}{3}}$)
(2)2a${\;}^{-\frac{1}{3}}$($\frac{1}{2}$a${\;}^{\frac{1}{3}}$-2a${\;}^{-\frac{2}{3}}$)
(3)(2a${\;}^{\frac{1}{2}}$+3b${\;}^{-\frac{1}{4}}$)(2a${\;}^{\frac{1}{2}}$-3b${\;}^{-\frac{1}{4}}$)
(4)(a2-2+a-2)÷(a2-a-2

分析 根據(jù)指數(shù)冪的運(yùn)算性質(zhì)化簡(jiǎn)求值即可.

解答 解:(1)4a${\;}^{\frac{2}{3}}$b${\;}^{-\frac{1}{3}}$÷(-$\frac{2}{3}$a${\;}^{-\frac{1}{3}}$b${\;}^{-\frac{1}{3}}$)=4×(-$\frac{3}{2}$)•${a}^{\frac{2}{3}+\frac{1}{3}}$•$^{-\frac{1}{3}+\frac{1}{3}}$=-6a;
(2)2a${\;}^{-\frac{1}{3}}$($\frac{1}{2}$a${\;}^{\frac{1}{3}}$-2a${\;}^{-\frac{2}{3}}$)=2×$\frac{1}{2}$•a0-4a-1=$\frac{a-4}{a}$;
(3)(2a${\;}^{\frac{1}{2}}$+3b${\;}^{-\frac{1}{4}}$)(2a${\;}^{\frac{1}{2}}$-3b${\;}^{-\frac{1}{4}}$)=${({2a}^{\frac{1}{2}})}^{2}$-${({3b}^{-\frac{1}{4}})}^{2}$=4a-9$^{-\frac{1}{2}}$;
(4)(a2-2+a-2)÷(a2-a-2)=$\frac{{(a{-a}^{-1})}^{2}}{(a{+a}^{-1})(a{-a}^{-1})}$=$\frac{{a}^{2}-1}{{a}^{2}+1}$.

點(diǎn)評(píng) 本題考查了指數(shù)冪的運(yùn)算性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知a>0,設(shè)P:函數(shù)f(x)=$\frac{1}{3}$x3+ax2+ax在(-∞,+∞)上單調(diào)遞增,Q:log2(2a-a2+$\frac{1}{4}$)>0,若命題P∧Q為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)y=2sin(4x+$\frac{π}{3}$)+1的最小正周期是( 。
A.B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若不等式x2-ax+a>0在(1,+∞)上恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.[0,4]B.[4,+∞)C.(-∞,4)D.(-∞,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在三棱錐O-ABC中,已知OA,OB,OC兩兩垂直且相等,點(diǎn)P、Q分別是線段BC和OA上的動(dòng)點(diǎn),且滿足BP≤$\frac{1}{2}$BC,AQ≥$\frac{1}{2}$AO,則PQ和OB所成角的余弦值的取值范圍是( 。
A.[$\frac{\sqrt{2}}{2}$,1]B.[$\frac{\sqrt{3}}{3}$,1]C.[$\frac{\sqrt{3}}{3}$,$\frac{2\sqrt{5}}{5}$]D.[$\frac{\sqrt{2}}{2}$,$\frac{2\sqrt{5}}{5}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)定義在區(qū)間(-b,b)上的非常函數(shù)f(x)=lg$\frac{1+ax}{1-2x}$是奇函數(shù),則ab的范圍是( 。
A.($\frac{\sqrt{2}}{2}$,$\sqrt{2}$]B.(1,$\sqrt{2}$]C.[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]D.[1,$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)y=f(x)是二次函數(shù),方程f(x)=0有兩個(gè)相等的實(shí)根,且f′(x)=2x+2.
(1)求y=f(x)的圖象與兩坐標(biāo)軸所圍成圖形的面積;
(2)若直線x=-t(0<t<1)把y=f(x)的圖象與兩坐標(biāo)軸所圍成圖形的面積二等分,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)全集U={0,1,2,3},集合M={1,3},則M的補(bǔ)集∁UM為( 。
A.{0}B.{2}C.{0,2}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.某食品的保鮮時(shí)間y(單位:小時(shí))與儲(chǔ)存溫度x(單位:℃)滿足函數(shù)關(guān)系y=ekx+b(e為自然對(duì)數(shù)的底數(shù),k、b為實(shí)常數(shù)),若該食品在0℃的保鮮時(shí)間為120小時(shí),在22℃的保鮮時(shí)間是30小時(shí),則該食品在33℃的保鮮時(shí)間是15小時(shí).

查看答案和解析>>

同步練習(xí)冊(cè)答案