14.設(shè)全集U=R,集合A={x|$\frac{x-3}{x+1}>0$},B={x|x2+x-2>0},則CUB=[-2,1],A∩B=(-∞,-2)∪(3,+∞),,A∪B=(-∞,-1)∪(1,+∞).

分析 先解出集合A、B,然后根據(jù)集合的運(yùn)算求解即可.

解答 解:∵集合A={x|$\frac{x-3}{x+1}>0$}=(-∞,-1)∪(3,+∞),
B={x|x2+x-2>0}=(-∞,-2)∪(1,+∞),
又全集U=R,
∴CUB=[-2,1],
A∩B=(-∞,-2)∪(3,+∞),
A∪B=(-∞,-1)∪(1,+∞),
故答案為:CUB=[-2,1],
A∩B=(-∞,-2)∪(3,+∞),
A∪B=(-∞,-1)∪(1,+∞).

點(diǎn)評(píng) 本題主要考查集合的運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知AB是球O的一條直徑,點(diǎn)O1是AB上一點(diǎn),若OO1=4,平面α過(guò)點(diǎn)O1且垂直AB,截得圓O1,當(dāng)圓O1的面積為9π時(shí),則球O的表面積是100π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=ln(ax+1)-$\frac{2ax}{x+2}$(a>0,a為常數(shù)).
(Ⅰ)當(dāng)0$<a≤\frac{1}{2}$時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x≥0時(shí),若不等式f(x)≥2ln2-$\frac{3}{2}$恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.直角坐標(biāo)系下,曲線(xiàn)C的參數(shù)方程為$\left\{\begin{array}{l}{x=4cosφ}\\{y=2sinφ}\end{array}\right.$(φ為參數(shù)).
(1)在橫坐標(biāo)系下,曲線(xiàn)C與射線(xiàn)θ=$\frac{π}{4}$和射線(xiàn)θ=-$\frac{π}{4}$分別交于A,B兩點(diǎn),求△AOB的面積;
(2)在直角坐標(biāo)系下,直線(xiàn)l的參數(shù)方程為$\left\{\begin{array}{l}{x=6\sqrt{2-2t}}\\{y=t-\sqrt{2}}\end{array}\right.$(t為參數(shù)),求曲線(xiàn)C與直線(xiàn)l的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知f(x)=$\left\{\begin{array}{l}-3{x^2}+4x,0≤x<1\\ f(x-1)+1,x≥1.\end{array}\right.$,則f(3)=3;若關(guān)于x的方程f(x)=ax+1恰有三個(gè)不同的解,則實(shí)數(shù)a的取值范圍為(0,$\frac{1}{2}$)∪(4-2$\sqrt{3}$,$\frac{2}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知函數(shù)f(x)=x3+ax2+bx+c的一個(gè)零點(diǎn)為x=1,另外兩個(gè)零點(diǎn)可分別作為一個(gè)橢圓和一個(gè)雙曲線(xiàn)的離心率,則$\frac{a}$取值范圍是(-2,$-\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,已知F為拋物線(xiàn)y2=4x的焦點(diǎn),點(diǎn)A,B,C在該拋物線(xiàn)上,其中A,C關(guān)于x軸對(duì)稱(chēng)(A在第一象限),且直線(xiàn)BC經(jīng)過(guò)點(diǎn)F.
(Ⅰ)若△ABC的重心為G($\frac{3}{2},\frac{4}{3}$),求直線(xiàn)AB的方程;
(Ⅱ)設(shè)S△ABO=S1,S△CFO=S2,其中O為坐標(biāo)原點(diǎn),求S12+S22的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知?jiǎng)狱c(diǎn)P(x,y)滿(mǎn)足約束條件$\left\{\begin{array}{l}{y≥2|x|-1}\\{y≤x+1}\end{array}\right.$,則z=|2x-3y-6|的最小值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=2x的反函數(shù)為f-1(x)
(1)若f-1(x)-f-1(1-x)=1,求實(shí)數(shù)x的值;
(2)若關(guān)于x的方程f(x)+f(1-x)-m=0在區(qū)間[1,2]內(nèi)有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案