如圖,修建一條公路需要一段環(huán)湖彎曲路段與兩條直道平滑連接(相切).已知環(huán)湖彎曲路段為某三次函數(shù)圖象的一部分,則該函數(shù)的解析式為( )
A.y=x3-x2-x
B.y=x3+x2-3x
C.y=x3-x
D.y=x3+x2-2x
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
不論a為何值時,函數(shù)y=(a-1)2x-恒過定點(diǎn),則這個定點(diǎn)的坐標(biāo)是( )
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)y=f(x)(x∈R).對函數(shù)y=g(x)(x∈I),定義g(x)關(guān)于f(x)的“對稱函數(shù)”為函數(shù)y=h(x)(x∈I).y=h(x)滿足:對任意x∈I,兩個點(diǎn)(x,h(x)),(x,g(x))關(guān)于點(diǎn)(x,f(x))對稱.若h(x)是g(x)=關(guān)于f(x)=3x+b的“對稱函數(shù)”,且h(x)>g(x)恒成立,則實(shí)數(shù)b的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
下表是函數(shù)值y隨自變量x變化的一組數(shù)據(jù),它最可能的函數(shù)模型是( )
x | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
y | 15 | 17 | 19 | 21 | 23 | 25 | 27 |
A.一次函數(shù)模型 B.冪函數(shù)模型
C.指數(shù)函數(shù)模型 D.對數(shù)函數(shù)模型
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某類產(chǎn)品按工藝共分10個檔次,最低檔次產(chǎn)品每件利潤為8元.每提高一個檔次,每件利潤增加2元.用同樣工時,可以生產(chǎn)最低檔產(chǎn)品60件,每提高一個檔次將少生產(chǎn)3件產(chǎn)品.則獲得利潤最大時生產(chǎn)產(chǎn)品的檔次是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若點(diǎn)P是函數(shù)y=ex-e-x-3x圖象上任意一點(diǎn),且在點(diǎn)P處切線的傾斜角為α,則α的最小值是( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R).
(1)若函數(shù)f(x)的圖象過原點(diǎn),且在原點(diǎn)處的切線斜率為-3,求a,b的值.
(2)若曲線y=f(x)存在兩條垂直于y軸的切線,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
對于在R上可導(dǎo)的任意函數(shù)f(x),若滿足(x-a)f′(x)≥0,則必有( )
A.f(x)≥f(a) B.f(x)≤f(a)
C.f(x)>f(a) D.f(x)<f(a)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若函數(shù)f(x),g(x)滿足f(x)·g(x)dx=0,則稱f(x),g(x)為區(qū)間[-1,1]上的一組正交函數(shù).給出三組函數(shù):
①f(x)=sinx,g(x)=cosx;②f(x)=x+1,g(x)=x-1;③f(x)=x,g(x)=x2.
其中為區(qū)間[-1,1]上的正交函數(shù)的組數(shù)是( )
A.0 B.1
C.2 D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com