8.若復(fù)數(shù)z滿足(2+i)z=|1-2i|,則復(fù)數(shù)z所對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運算性質(zhì)、模的計算公式、幾何意義即可得出.

解答 解:∵復(fù)數(shù)z滿足(2+i)z=|1-2i|,
∴z=$\frac{|1-2i|}{2+i}$=$\frac{\sqrt{5}(2-i)}{(2+i)(2-i)}$=$\frac{2\sqrt{5}}{5}-\frac{\sqrt{5}}{5}i$,
則復(fù)數(shù)z所對應(yīng)的點$(\frac{2\sqrt{5}}{5},-\frac{\sqrt{5}}{5})$位于第四象限.
故選:D.

點評 本題考查了復(fù)數(shù)的運算性質(zhì)、模的計算公式、幾何意義,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知直線l:(2+m)x+(1-2m)y+4-3m=0.
(1)求證:不論m為何實數(shù),直線l恒過一定點M;
(2)過定點M作一條直線l1,使夾在兩坐標(biāo)軸之間的線段被M點平分,求直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x∈(0,1]時f(x)=1+log2x.若對任意的x∈R都有f(x)=f(x+4),則f(2014)+f(2016)-2f(2015)=( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=lnx-$\frac{1}{2}$mx2+x(m∈R).
(Ⅰ)若函數(shù)f(x)在(0,+∞)上沒有極值點,求實數(shù)m的取值范圍并且判斷單調(diào)性;
(Ⅱ)若關(guān)于x的不等式f(x)≤mx-1恒成立,求整數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.不等式$\frac{x+1}{x-3}$≥0的解集是{x|x>3或x≤-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.隨著旅游觀念的轉(zhuǎn)變和旅游業(yè)的發(fā)展,國民在旅游休閑方面的投入不斷增多,民眾對旅游的需求也不斷提高,安慶某社區(qū)居委會統(tǒng)計了2011至2015年每年春節(jié)期間外出旅游的家庭數(shù),具體統(tǒng)計資料如表:
年份(x)20112012201320142015
家庭數(shù)(y)610162226
(Ⅰ)從這5年中隨機抽取兩年,求外出旅游的家庭至少有1年多于20個的概率;
(Ⅱ)利用所給數(shù)據(jù),求出春節(jié)期間外出旅游的家庭數(shù)與年份之間的回歸直線方程$\hat y=bx+a$,并判斷它們之間是正相關(guān)還是負相關(guān);
(Ⅲ)利用(Ⅱ)中所求出的回歸直線方程估計該社區(qū)2016年在春節(jié)期間外出旅游的家庭數(shù).
參考公式:$b=\frac{{\sum_{i=1}^n{({x_i}-\bar x)({y_i}-\bar y)}}}{{\sum_{i=1}^n{{{({x_i}-\bar x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\bar x\bar y}}}{{\sum_{i=1}^n{{x_i}^2-{{\bar x}^2}}}}$,$\overline{y}=b\bar x+a$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.關(guān)于x的方程${x^2}+4xsin\frac{α}{2}+mtan\frac{α}{2}=0(0<α<π)$有兩個相等的實數(shù)根.
(1)求實數(shù)m的取值范圍;
(2)若$m+2cosα=\frac{4}{3}$,求$\frac{1+sin2α-cos2α}{1+tanα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,點P是△ABC所在平面外的一點,PA=PB=PC=AB=BC=AC=1,F(xiàn)為AP的中點.
(1)求異面直線PC與AB所成角的大小;
(2)求異面直線AB與PC的距離;
(3)E為AB的中點,求CF與PE所成角的大;
(4)求P到平面ABC的距離;
(5)求F到平面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(α>b>0)過點(-2,$\sqrt{2}$),F(xiàn)(2,0)是C的一個焦點.
(I)求橢圓C的方程;
(Ⅱ)已知過點F的直線l與C在y軸右側(cè)的部分相交于M,N兩點,若點M,N與橢圓C短軸的兩端點構(gòu)成的四邊形的面積為S.求S的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案