19.設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x∈(0,1]時(shí)f(x)=1+log2x.若對(duì)任意的x∈R都有f(x)=f(x+4),則f(2014)+f(2016)-2f(2015)=(  )
A.-2B.-1C.1D.2

分析 由f(x)=f(x+4)得出f(x)是周期為4的函數(shù),再由f(x)是奇函數(shù),求出f(2)=f(-2)=0,從而求出f(2015)與f(2014)、f(2016)的值.

解答 解:∵f(x)=f(x+4),∴f(-2)=f(-2+4)=f(2),
又∵奇函數(shù)f(x),∴f(-2)=-f(2)=0,
又∵2015=4•504-1,2014=4•503+2,2016=4•504,
∴f(2015)=f(-1)=-1,f(2014)=f(2)=0,f(2016)=0
∴f(2014)+f(2016)-2f(2015)=2.
故選:D.

點(diǎn)評(píng) 本題考查了函數(shù)的奇偶性和周期性的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=sin(ωx+φ)(ω>0)的圖象如圖所示,則f($\frac{5π}{6}$)=( 。
A.$-\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某中學(xué)從甲、乙兩個(gè)藝術(shù)班中各選出7名同學(xué)參加才藝比賽,他們?nèi)〉玫某煽?jī)(滿分100分)的莖葉圖如圖所示,其中甲班同學(xué)成績(jī)的眾數(shù)是80,乙班同學(xué)成績(jī)的中位數(shù)是88,則x+y的值為(  )
A.11B.9C.8D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知cos(x+$\frac{π}{4}$)=$\frac{3}{5}$,$\frac{17π}{12}$<x<$\frac{7π}{4}$,則cos(2x+$\frac{π}{4}$)=-$\frac{31\sqrt{2}}{50}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知拋物線y2=4$\sqrt{3}$x的準(zhǔn)線與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1兩條漸近線分別交于A,B兩點(diǎn),且|AB|=2,則雙曲線的離心率e為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(A類題)設(shè)f(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$,其中e為自然底數(shù).
(Ⅰ)若f(m)=2,求實(shí)數(shù)m的值;
(Ⅱ)求f(x)的反函數(shù)f-1(x);
(Ⅲ)判斷f(x)的反函數(shù)f-1(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知一個(gè)算法的程序圖如圖所示,當(dāng)輸入x∈[-2,9]時(shí),則輸出的y屬于( 。
A.[-1,2]B.[0,2]C.[-1,$\frac{5}{2}$)D.[0,$\frac{5}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若復(fù)數(shù)z滿足(2+i)z=|1-2i|,則復(fù)數(shù)z所對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2.
(1)若橢圓C經(jīng)過點(diǎn)($\frac{\sqrt{6}}{2}$,1),求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)A(-2,0),F(xiàn)為橢圓C的左焦點(diǎn),若橢圓C上存在點(diǎn)P,滿足$\frac{PA}{PF}$=$\sqrt{2}$,求橢圓C的離心率的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案