6.已知函數(shù)f(x)=$\frac{4x+a}{{x}^{2}+1}$在區(qū)間[m,n]上為增函數(shù),且f(m)•f(n)=-4,當(dāng)f(n)-f(m)取得最小值時(shí),a+m的值為-1.

分析 通過(guò)單調(diào)性可知f(m)<0<f(n),利用基本不等式可知,當(dāng)且僅當(dāng)f(n)=-f(m)=2時(shí)f(n)-f(m)=4,通過(guò)分別在f(n)=2、-f(m)=2中求出a的表達(dá)式,進(jìn)而可得確定a=0,計(jì)算即得結(jié)論.

解答 解:∵函數(shù)f(x)=$\frac{4x+a}{{x}^{2}+1}$在區(qū)間[m,n]上為增函數(shù),
∴f(m)<f(n),
又∵f(m)•f(n)=-4,
∴f(m)<0<f(n),
由基本不等式可知,f(n)-f(m)=f(n)+[-f(m)]
≥2$\sqrt{f(n)[-f(m)]}$
=2$\sqrt{-f(m)•f(n)}$
=4,當(dāng)且僅當(dāng)f(n)=-f(m)=2時(shí)取等號(hào),
由f(n)=$\frac{4n+a}{1+{n}^{2}}$=2可知,a=2(n-1)2≥0,
由-f(m)=-$\frac{4m+a}{{m}^{2}+1}$=2可知,a=-2(m+1)2≤0,
從而a=0,m=-1,
于是a+m=0-1=-1,
故答案為:-1.

點(diǎn)評(píng) 本題考查函數(shù)的最值及其幾何意義,涉及基本不等式等基礎(chǔ)知識(shí),注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知遞增等差數(shù)列{an}中a1=2,且a1,a2,a4成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{2}{n({a}_{n}+2)}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,點(diǎn)P,Q,R分別是棱A1A,A1B1,A1D1的中點(diǎn),以△PQR為底面作正三棱柱.若此三棱柱另一底面的三個(gè)頂點(diǎn)也都在該正方體的表面上,則這個(gè)正三棱柱的高h(yuǎn)=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知數(shù)列an:$\frac{1}{1}$,$\frac{2}{1}$,$\frac{1}{2}$,$\frac{3}{1}$,$\frac{2}{2}$,$\frac{1}{3}$,$\frac{4}{1}$,$\frac{3}{2}$,$\frac{2}{3}$,$\frac{1}{4}$,…,依它的前10項(xiàng)的規(guī)律知a2106應(yīng)為(  )
A.$\frac{3}{61}$B.$\frac{2}{61}$C.$\frac{1}{63}$D.$\frac{1}{64}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若等差數(shù)列{an}的公差d≠0,前n項(xiàng)和為Sn,若?n∈N*,都有Sn≤S10,則(  )
A.?n∈N*,都有an<an-1B.a9•a10>0
C.S2>S17D.S19≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=$\frac{1}{2}$,Sn=2an+1-1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=$\frac{n+1}{{a}_{n}}$(n∈N+),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.為了促進(jìn)公民通過(guò)“走步”健身,中國(guó)平安公司推出的“平安好醫(yī)生”軟件,最近開(kāi)展了“步步奪金”活動(dòng).活動(dòng)規(guī)則:①使用平安好醫(yī)生APP計(jì)步器,每天走路前1000步獎(jiǎng)勵(lì)0.3元紅包,之后每2000步獎(jiǎng)勵(lì)0.1元紅包,每天最高獎(jiǎng)勵(lì)不超過(guò)3元紅包.②活動(dòng)期間,連續(xù)3天領(lǐng)錢(qián)成功,從第4天起走路獎(jiǎng)金翻1倍(乘以2),每天最高獎(jiǎng)勵(lì)不超過(guò)6元紅包.某人連續(xù)使用此軟件五天,并且每天領(lǐng)錢(qián)成功.這五天他走的步數(shù)統(tǒng)計(jì)如下:
   時(shí)間   第一天  第二天  第三天  第四天  第五天
   步數(shù)   13980  15456  17890  19012  21009
則他第二天獲得的獎(jiǎng)勵(lì)紅包為1.0元,這五天累計(jì)獲得的獎(jiǎng)勵(lì)紅包為8.0元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知集合A={x|$\frac{x}{x-2}$≤0},集合B={1,2,3},則A∩B=(  )
A.{1}B.{1,2}C.{2,3}D.{3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.求函數(shù)y=3sin(2x+$\frac{π}{4}$),x∈[0,$\frac{π}{2}$]的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案