9.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-4y+3≤0}\\{3x+5y-25≤0}\\{x≥1}\end{array}\right.$,則函數(shù)z=2x+y的最大值為( 。
A.12B.$\frac{32}{5}$C.3D.15

分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,即可求最大值.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當(dāng)直線y=-2x+z經(jīng)過點(diǎn)A時(shí),直線y=-2x+z的截距最大,
此時(shí)z最大.
由$\left\{\begin{array}{l}{x-4y+3=0}\\{3x+5y-25=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=5}\\{y=2}\end{array}\right.$,即A(5,2),
代入目標(biāo)函數(shù)z=2x+y得z=2×5+2=12.
即目標(biāo)函數(shù)z=2x+y的最大值為12.
故選:A

點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.以集合A={2,4,6,7,8,11,12,13}中的任意兩個(gè)元素分別為分子與分母構(gòu)成分?jǐn)?shù),則這種分?jǐn)?shù)是可約分?jǐn)?shù)的概率是$\frac{5}{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}的前n項(xiàng)和Sn通項(xiàng)an滿足2Sn+an=1,數(shù)列{bn}中,b1=1,b2=$\frac{1}{2}$,$\frac{2}{_{n+1}}$=$\frac{1}{_{n}}$+$\frac{1}{_{n+2}}$(n∈N*
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)數(shù)列{cn}滿足cn=$\frac{{a}_{n}}{_{n}}$,求{cn}前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.根據(jù)圖中線段的排列規(guī)則,試猜想第8個(gè)圖形中線段的條數(shù)為511.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知數(shù)列{an}的前n項(xiàng)和${S_n}={n^2}-4n+1$,則a1+a2+a3+…+a10=61.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,若$\overrightarrow{AB}$•$\overrightarrow{BC}$=$\overrightarrow{BC}$•$\overrightarrow{CA}$=$\overrightarrow{CA}$•$\overrightarrow{AB}$,則該三角形是(  )
A.等腰三角形B.直角三角形C.等腰直角三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)$y=\frac{ln(2x-1)}{{\sqrt{2-x}}}$的定義域?yàn)椋ā 。?table class="qanwser">A.($\frac{1}{2}$,+∞)B.($\frac{1}{2}$,2)C.($\frac{1}{2}$,1)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知方程lnx-ax+1=0(a為實(shí)常數(shù))有兩個(gè)不等實(shí)根,則實(shí)數(shù)a的取值范圍是( 。
A.(0,e)B.[1,e]C.(0,1)D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知二次函數(shù)f(x)圖象過原點(diǎn),且f(-1)∈[-1,2],f(1)∈[2,4],求f(-2)取值范圍.

查看答案和解析>>

同步練習(xí)冊答案