2.如圖所示,點P是圓O直徑AB延長線上的一點,PC切圓O于點C,直線PQ平分∠APC,分別交AC、BC于點M、N.求證:
(1)△CMN為等腰三角形;
(2)PB•CM=PC•BN.

分析 (1)根據(jù)題意,證明∠CNM=∠CMN,即可證明△CMN是等腰三角形;
(2)利用對應(yīng)角相等證明△PNB∽△PMC,即可證明PB•CM=PC•BN.

解答 解:(1)∵PC是圓O的切線,切點為C,
∴∠PCB=∠PAC;
又∵∠CPM=∠APM,
∴∠CNM=∠CPM+∠PCB=∠APM+∠PAM=∠CMN,
∴△CMN是等腰三角形;
(2)∵∠CMN=∠CNM,∠CNM=∠BNP,
∴∠CMN=∠BNP,
又∵∠CNP=∠BPN,
∴△PNB∽△PMC,
∴$\frac{PB}{PC}$=$\frac{BN}{CM}$,
即PB•CM=PC•BN.

點評 本題考查了推理與證明的應(yīng)用問題,也考查了圓與三角形的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,圓O的直徑AB=4,P是AB延長線上一點,BP=1,割線PCD交圓O于點C,D,過點P作AP的垂線,交直線AC于點E,交直線AD于點F.
(1)求證:∠ACD=∠F;
(2)若PE=1,求EF的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,圓O是△ABC的外接圓,PA垂直圓O所在的平面,PA=4,AC=2,Q是圓O上的動點,∠AQC=30°,則四棱錐P-ABQC外接球的表面積為32π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在極坐標系中,點A(2,$\frac{π}{2}$)到直線ρcos($θ+\frac{π}{4}$)=$\sqrt{2}$的距離為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=(x2+ax-2a-3)•e3-x(a∈R);
(1)討論f(x)的單調(diào)性;
(2)設(shè)g(x)=(a2+$\frac{25}{4}$)ex(a>0),若存在(a>0),x1,x2∈[0,4]使得|f(x1)-g(x2)|<1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在平面內(nèi),$\overrightarrow{A{B_1}}$⊥$\overrightarrow{A{B_2}}$,|$\overrightarrow{O{B_1}}$|=|$\overrightarrow{O{B_2}}$|=2,$\overrightarrow{AP}$=$\overrightarrow{A{B_1}}$+$\overrightarrow{A{B_2}}$,若|${\overrightarrow{OP}}$|<1,則|${\overrightarrow{OA}}$|的取值范圍是($\sqrt{7}$,2$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求函數(shù)f(x)=3-2asinx-cos2x的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.為了了解網(wǎng)購是否與性別有關(guān),對50名青年人進行問卷調(diào)查得到了如下的統(tǒng)計表:
喜愛網(wǎng)購不喜愛網(wǎng)購合計
20525
101525
合計302050
(1)用分層抽樣的方法在喜愛網(wǎng)購的人中抽6人,其中抽到多少名女性?
(2)在上述抽到的6人中選2人,求恰好有一名男性的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知無窮數(shù)列{an}滿足an+1=p•an+$\frac{q}{a_n}$(n∈N*).其中p,q均為非負實數(shù)且不同時為0.
(1)若p=$\frac{1}{2}$,q=2,且a3=$\frac{41}{20}$,求a1的值;
(2)若a1=5,p•q=0,求數(shù)列{an}的前n項和Sn;
(3)若a1=2,q=1,求證:當p∈(${\frac{1}{2}$,$\frac{3}{4}})$)時,數(shù)列{an}是單調(diào)遞減數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案