分析 由已知可求出g(x)的解析式,分類討論出函數(shù)在各段上的單調(diào)性,進(jìn)而求出函數(shù)的最值的表達(dá)式,進(jìn)而可得h(a)的表達(dá)式.
解答 解:∵f(x)=$\left\{\begin{array}{l}{1,1≤x≤2}\\{x-1,2<x≤3}\end{array}\right.$,
∴g(x)=f(x)-ax=$\left\{\begin{array}{l}1-ax,1≤x≤2\\(1-a)x-1,2<x≤3\end{array}\right.$,
當(dāng)1≤x≤2時(shí),g(x)max=1-a,g(x)min=1-2a(2分)
當(dāng)2≤x≤3時(shí),
若0≤a≤1,則g(x)在[2,3]上遞增,
g(x)max=2-3a,g(x)min=1-2a(4分)
若a>1時(shí),則g(x)在[2,3]上遞減,
g(x)max=1-2a,g(x)min=2-3a(6分)
∴當(dāng)0≤a≤$\frac{1}{2}$時(shí),g(x)max=2-3a,g(x)min=1-2a
當(dāng)$\frac{1}{2}$≤a≤1時(shí),g(x)max=1-a,g(x)min=1-2a
當(dāng)a≥1時(shí),g(x)max=1-a,g(x)min=2-3a(9分)
∴h(a)=$\left\{\begin{array}{l}1-a,0≤a≤\frac{1}{2}\\ a,\frac{1}{2}<a<1\\ 2a-1,a≥1\end{array}\right.$ (12分)
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是分段函數(shù)的應(yīng)用,其中分段函數(shù)分段處理是解答此類問題的常用方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A={0,8} | B. | A∪B={0,2,4,6,8} | C. | ∁SA∩∁SB={6} | D. | ∁SA∪∁SB={6} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com