【題目】設(shè)三棱錐的底面是正三角形,側(cè)棱長均相等,是棱上的點(不含端點),記直線與直線所成角為,直線與平面所成角為,二面角的平面角為,則( )
A. B.
C. D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(,且).
(1)當(dāng)(其中,且t為常數(shù))時,是否存在最小值,如果存在,求出最小值;如果不存在,請說明理由;
(2)當(dāng)時,求滿足不等式的實數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在極坐標(biāo)系中,圓C的極坐標(biāo)方程為:
(1)求圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線交于兩點,若點的坐標(biāo)為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)為了解群眾上下班共享單車使用情況,根據(jù)年齡按分層抽樣的方式調(diào)查了該地區(qū)50名群眾,他們的年齡頻數(shù)及使用共享單車人數(shù)分布如下表:
年齡段 | 20~29 | 30~39 | 40~49 | 50~60 |
頻數(shù) | 12 | 18 | 15 | 5 |
經(jīng)常使用共享單車 | 6 | 12 | 5 | 1 |
(1)由以上統(tǒng)計數(shù)據(jù)完成下面的列聯(lián)表,并判斷是否有95%的把握認(rèn)為以40歲為分界點對是否經(jīng)常使用共享單車有差異?
年齡低于40歲 | 年齡不低于40歲 | 總計 | |
經(jīng)常使用共享單車 | |||
不經(jīng)常使用共享單車 | |||
總計 |
附:,.
0.25 | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
(2)若采用分層抽樣的方式從年齡低于40歲且經(jīng)常使用共享單車的群眾中選出6人,再從這6人中隨機(jī)抽取2人,求這2人中恰好有1人年齡在30~39歲的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形所在的半平面和直角梯形所在的半平面成的二面角,,,,,,.
(Ⅰ)求證:平面平面;
(Ⅱ)試問在線段上是否存在一點,使銳二面角的余弦值為.若存在,請求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)解關(guān)于x的不等式;
(2)對任意的(﹣1,2),恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖1是由矩形和菱形組成的一個平面圖形,其中, ,將其沿折起使得與重合,連結(jié),如圖2.
(1)證明圖2中的四點共面,且平面平面;
(2)求圖2中的四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一個盒子中,放有標(biāo)號分別為1,2,3的三張卡片,現(xiàn)從這個盒子中,有放回地先后抽得兩張卡片的標(biāo)號分別為x、y,設(shè)O為坐標(biāo)原點,點P的坐標(biāo)為記.
(1)求隨機(jī)變量的最大值,并求事件“取得最大值”的概率;
(2)求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2015年推出一種新型家用轎車,購買時費用為16.9萬元,每年應(yīng)交付保險費、養(yǎng)路費及汽油費共1.2萬元,汽車的維修費為:第一年無維修費用,第二年為0.2萬元,從第三年起,每年的維修費均比上一年增加0.2萬元.
(I)設(shè)該輛轎車使用n年的總費用(包括購買費用、保險費、養(yǎng)路費、汽油費及維修費)為f(n),求f(n)的表達(dá)式;
(II)這種汽車使用多少報廢最合算(即該車使用多少年,年平均費用最少)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com