12.集合P={x∈R||x|≥3,Q={y|y=2x-1,x∈R},則P∪Q=( 。
A.(-∞,-3]∪(1,+∞)B.(-∞,-3]∪(-1,+∞)C.(-∞,1)∪[3,+∞)D.(-∞,-1)∪[3,+∞)

分析 根據(jù)集合的基本運(yùn)算進(jìn)行求解即可.

解答 解:∵P={x∈R||x|≥3}={x|x≥3或x≤-3},Q={y|y=2x-1,x∈R}={y|y>-1}
∴P∪Q=(-∞,-3]∪(-1,+∞),
故選:B.

點(diǎn)評(píng) 本題主要考查集合的基本運(yùn)算,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)a=3x2-x+1,b=2x2+x,則(  )
A.a>bB.a<bC.a≥bD.a≤b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.化簡(jiǎn):(1+$\frac{1}{ta{n}^{2}θ}$)sin2θ=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在某比賽中,評(píng)委為一選手打出如下七個(gè)分?jǐn)?shù):97,91,87,91,94,95,94 去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的方差為2.8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知圓(x+2)2+(y-2)2=a截直線x+y+2=0所得弦的長(zhǎng)度為6,則實(shí)數(shù)a的值為( 。
A.8B.11C.14D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在等比數(shù)列{an}中,a1=4,a4=-$\frac{4}{27}$,則{an}的前10項(xiàng)和等于(  )
A.3(1-3-10B.$\frac{1}{9}$(1-3-10C.-6(1-3-10D.3(1+3-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知圓E:(x+1)2+y2=16,點(diǎn)F(1,0),P是圓E上的任意一點(diǎn),線段PF的垂直平分線和半徑PE相交于點(diǎn)Q,則動(dòng)點(diǎn)Q的軌跡方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列各點(diǎn)中,可作為函數(shù)y=tanx的對(duì)稱中心的是(  )
A.($\frac{π}{4}$,0)B.($\frac{π}{4}$,1)C.(-$\frac{π}{4}$,0)D.($\frac{π}{2}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在直角坐標(biāo)系xOy中,直線l的方程是y=8,圓C的參數(shù)方程是$\left\{\begin{array}{l}{x=2+2cosφ}\\{y=2sinφ}\end{array}\right.$(φ為參數(shù)),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求直線l和圓C的極坐標(biāo)方程;
(2)射線OM:θ=α(其中0<α<$\frac{π}{2}$)與圓C交于O,P兩點(diǎn),與直線l交于點(diǎn)M,直線ON:θ=α+$\frac{π}{2}$與圓C交于O,Q兩點(diǎn),與直線l交于點(diǎn)N,求$\frac{|OP|}{|OM|}•\frac{|OQ|}{|ON|}$的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案