7.已知正數(shù)數(shù)列{an}滿足:a1=1,n∈N*時,有$\frac{{a}_{n-1}}{{a}_{n}}$=$\frac{{a}_{n-1}+1}{1-{a}_{n}}$.
(1)求{an}的通項公式;
(2)試問a3•a6是否為數(shù)列{an}中的項,若是,是第幾項,若不是,說明理由;
(3)設(shè)cn=an•an+1(n∈N*),若{cn}的前n項之和為Sn,求Sn

分析 (1)由$\frac{{a}_{n-1}}{{a}_{n}}$=$\frac{{a}_{n-1}+1}{1-{a}_{n}}$,化為:$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n-1}}$=2,利用等差數(shù)列的通項公式即可得出.
(2)a3•a6=$\frac{1}{5}×\frac{1}{11}$=$\frac{1}{55}$=$\frac{1}{2×28-1}$,即可判斷出結(jié)論.
(3)cn=an•an+1=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,利用“裂項求和”即可得出.

解答 解:(1)∵$\frac{{a}_{n-1}}{{a}_{n}}$=$\frac{{a}_{n-1}+1}{1-{a}_{n}}$,化為:$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n-1}}$=2,
∴數(shù)列$\{\frac{1}{{a}_{n}}\}$是等差數(shù)列,首項為1,公差為2,
∴$\frac{1}{{a}_{n}}$=1+2(n-1)=2n-1,
∴${a}_{n}=\frac{1}{2n-1}$.
(2)a3•a6=$\frac{1}{5}×\frac{1}{11}$=$\frac{1}{55}$=$\frac{1}{2×28-1}$=a28,
∴a3•a6為數(shù)列{an}中的第28項.
(3)cn=an•an+1=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴{cn}的前n項之和為Sn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=2$(1-\frac{1}{2n+1})$
=$\frac{n}{2n+1}$.

點評 本題考查了遞推關(guān)系、等差數(shù)列的通項公式、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知二次函數(shù)f(x)=x2-bx-2.當(dāng)b=1,寫出函數(shù)y=|f(x)|單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在直角坐標(biāo)系中,已知點A(0,-2),B(2,2),C(-2,2)設(shè)M表示△ABC所所圍成的平面區(qū)域(含邊界),若對區(qū)域M的任意一點P(x,y)不等式ax+by≤2恒成立,其中a,b∈R,則以(a,b)為坐標(biāo)的點所形成的區(qū)域面積為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)$f(x)=sinx+\sqrt{3}cosx$,求f(x)的最小正周期及最大值,并指出f(x)取得最大值時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知等差數(shù)列{an}的前n項和為Sn,a2<0,且1,a2,81成等比數(shù)列,a3+a7=-6.
(Ⅰ)求{an}的通項公式;
(Ⅱ)求{$\frac{{S}_{n}}{n}$}的前n項和Tn取得最小值時n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.畫出計算1+2+$\frac{1}{2}$+3+$\frac{1}{3}$+…+2008+$\frac{1}{2008}$的算法框圖,并編寫出與框圖對應(yīng)的算法語句.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列說法錯誤的是( 。
A.如果命題“¬p”與命題“p或q”都是真命題,那么命題q一定是真命題.
B.命題p:$?{x_0}∈R,x_0^2-2{x_0}+4<0$,則$?p:?x∈R,x_{\;}^2-2{x_{\;}}+4≥0$
C.命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題
D.“$φ=\frac{π}{2}$”是“y=cos(2x+φ)為奇函數(shù)”的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若f(x)=$\left\{\begin{array}{l}{201{5}^{x}-2,x≥0}\\{{x}^{2}+1,x<0}\end{array}\right.$,則f[f(0)]的值為( 。
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且a2-c2=2b,sinAcosC=3cosAsinC,則下列關(guān)于△ABC的表述中正確的是( 。
A.必有一邊等于4B.必有一邊等于5
C.AC邊上的高是一個定值D.不可能是鈍角三角形

查看答案和解析>>

同步練習(xí)冊答案