16.若f(x)=$\left\{\begin{array}{l}{201{5}^{x}-2,x≥0}\\{{x}^{2}+1,x<0}\end{array}\right.$,則f[f(0)]的值為( 。
A.2B.1C.0D.-1

分析 求出f(0)的值是-1,從而求出f(-1)的值即可.

解答 解:∵f(0)=-1,
∴f(f(0))=f(-1)=2,
故選:A.

點評 本題考查了分段函數(shù),求函數(shù)值問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=ax2+x-b(a,b均為正數(shù)),不等式f(x)>0的解集記為P,集合Q={x|-2-t<x<-2+t},若對于任意正數(shù)t,P∩Q≠∅,則$\frac{1}{a}$-$\frac{1}$的最大值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知正數(shù)數(shù)列{an}滿足:a1=1,n∈N*時,有$\frac{{a}_{n-1}}{{a}_{n}}$=$\frac{{a}_{n-1}+1}{1-{a}_{n}}$.
(1)求{an}的通項公式;
(2)試問a3•a6是否為數(shù)列{an}中的項,若是,是第幾項,若不是,說明理由;
(3)設(shè)cn=an•an+1(n∈N*),若{cn}的前n項之和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知直線l與直線2x-y+4=0關(guān)于x=1對稱,則直線l的方程是( 。
A.2x+y-8=0B.3x-2y+1=0C.x+2y-5=0D.3x+2y-7=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)i為虛數(shù)單位,則復(fù)數(shù)$\frac{i-2}{i}$的共軛復(fù)數(shù)是1-2i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若直線l與直線y=2,x=4分別交于點P,Q,且線段PQ的中點坐標(biāo)為(1,-1),則直線l的斜率為( 。
A.1B.-1C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=2cos2(x+$\frac{π}{8}$)-2sin(x+$\frac{π}{8}$)cos(x+$\frac{π}{8}$)-1的最大值是(  )
A.$\sqrt{2}$B.2C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求$\underset{\underbrace{4+\frac{1}{4+\frac{1}{4+\frac{1}{4+…}}}}}{共10個4}$,畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若函數(shù)f(x)=ax3+3x2+(a-2)x-1在區(qū)間(-∞,+∞)上是減函數(shù),則實數(shù)a的取值范圍是(-1,0).

查看答案和解析>>

同步練習(xí)冊答案