【題目】如圖,在棱長為的正方體中,分別為棱的中點(diǎn),是線段的中點(diǎn),若點(diǎn)分別為線段上的動點(diǎn),則的最小值為( )
A. B. C. D.
【答案】D
【解析】
連接B1D1交EF于G,連接PG,則EF⊥平面B1D1DB,故EF⊥PG,從而PM的最小值PG,可知G為EF的中點(diǎn),D1G為D1B1的四分之一.其次,連接BD,設(shè)其中點(diǎn)為H,連接PH,BC1,則△D1DB≌△D1C1B,從而PN=PH.(實現(xiàn)了轉(zhuǎn)化,這步是解題之關(guān)鍵),最后,連接GH交BD1于K,則當(dāng)P為K時,PM+PN取得最小值,所求最小值為GH,即可得出結(jié)論.
首先PM的最小值就是P到EF的距離.
連接B1D1交EF于G,連接PG,則EF⊥平面B1D1DB,故EF⊥PG,從而PM的最小值PG,可知G為EF的中點(diǎn),D1G為D1B1的四分之一.其次,連接BD,設(shè)其中點(diǎn)為H,連接PH,BC1,則△D1DB≌△D1C1B1,從而PN=PH.(實現(xiàn)了轉(zhuǎn)化,這步是解題之關(guān)鍵)
最后,連接GH交BD1于K,則當(dāng)P為K時,PM+PN取得最小值,所求最小值為GH.
∵正方體ABCD﹣A1B1C1D1的棱長為1,
∴GH==.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: =1(a>b>0)的離心率是 ,過E的右焦點(diǎn)且垂直于橢圓長軸的直線與橢圓交于A,B兩點(diǎn),|AB|=2.
(Ⅰ)求橢圓方程;
(Ⅱ)過點(diǎn)P(0, )的動直線l與橢圓E交于的兩點(diǎn)M,N(不是的橢圓頂點(diǎn)),是否存在實數(shù)λ,使 +λ 為定值?若存在,求出λ的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)g(x)滿足g(g(x))=n(n∈N)有n+3個解,則稱函數(shù)g(x)為“復(fù)合n+3解”函數(shù).已知函數(shù)f(x)= (其中e是自然對數(shù)的底數(shù),e=2.71828…,k∈R),且函數(shù)f(x)為“復(fù)合5解”函數(shù),則k的取值范圍是( )
A.(﹣∞,0)
B.(﹣e,e)
C.(﹣1,1)
D.(0,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某校甲、乙、丙三個年級的學(xué)生志愿者人數(shù)分別為240,160,160.現(xiàn)采用分層抽樣的方法從中抽。访瑢W(xué)去某敬老院參加獻(xiàn)愛心活動.
(Ⅰ)應(yīng)從甲、乙、丙三個年級的學(xué)生志愿者中分別抽取多少人?
(Ⅱ)設(shè)抽出的7名同學(xué)分別用A,B,C,D,E,F,G表示,現(xiàn)從中隨機(jī)抽取2名同學(xué)承擔(dān)敬老院的衛(wèi)生工作.
(i)試用所給字母列舉出所有可能的抽取結(jié)果;
(ii)設(shè)M為事件“抽取的2名同學(xué)來自同一年級”,求事件M發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形中,,,點(diǎn)為線段上一動點(diǎn),現(xiàn)將沿折起,使點(diǎn)在面內(nèi)的射影在直線上,當(dāng)點(diǎn)從運(yùn)動到,則點(diǎn)所形成軌跡的長度為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,傾斜角為α(α≠ )的直線l的參數(shù)方程為 (t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρcos2θ﹣4sinθ=0.
(I)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)已知點(diǎn)P(1,0).若點(diǎn)M的極坐標(biāo)為(1, ),直線l經(jīng)過點(diǎn)M且與曲線C相交于A,B兩點(diǎn),設(shè)線段AB的中點(diǎn)為Q,求|PQ|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的右焦點(diǎn)為F,設(shè)直線l:x=5與x軸的交點(diǎn)為E,過點(diǎn)F且斜率為k的直線l1與橢圓交于A,B兩點(diǎn),M為線段EF的中點(diǎn).
(I)若直線l1的傾斜角為 ,求△ABM的面積S的值;
(Ⅱ)過點(diǎn)B作直線BN⊥l于點(diǎn)N,證明:A,M,N三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
O為AB的中點(diǎn)
(1)證明:AB⊥平面A1OC
(2)若AB=CB=2,平面ABC平面A1ABB1,求三棱柱ABC-A1B1C1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)樣本數(shù)據(jù)x1 , x2 , …,x2017的方差是4,若yi=2xi﹣1(i=1,2,…,2017),則y1 , y2 , …y2017的方差為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com