3.設(shè)橢圓C過焦點(diǎn)$(0,\sqrt{3}),(0,-\sqrt{3})$,離心率為$\frac{{\sqrt{3}}}{2}$,過點(diǎn)M(0,1)的直線l交橢圓C于點(diǎn)A、B,O是坐標(biāo)原點(diǎn),點(diǎn)P滿足$\overrightarrow{OP}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{OB}$);求:
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求動(dòng)點(diǎn)P的軌跡方程.

分析 (1)利用橢圓C過焦點(diǎn)$(0,\sqrt{3}),(0,-\sqrt{3})$,離心率為$\frac{{\sqrt{3}}}{2}$,求出c,a,可得b,即可求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)出直線l的方程,A,B的坐標(biāo),聯(lián)立直線與橢圓的方程,利用韋達(dá)定理表示出x1+x2,利用直線方程表示出y1+y2,然后利用$\overrightarrow{OP}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{OB}$)求得$\overrightarrow{OP}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{OB}$)的坐標(biāo),設(shè)出P的坐標(biāo),然后聯(lián)立方程消去參數(shù)k求得x和y的關(guān)系式,P點(diǎn)軌跡可得.

解答 解:(1)由題意,c=$\sqrt{3}$,$\frac{c}{a}$=$\frac{{\sqrt{3}}}{2}$,
∴a=2,
∴b=1,
∴橢圓C的標(biāo)準(zhǔn)方程為${x}^{2}+\frac{{y}^{2}}{4}$=1;
(2)設(shè)P(x,y)是所求軌跡上的任一點(diǎn),
①當(dāng)斜率存在時(shí),直線l的方程為y=kx+1,A(x1,y1),B(x2,y2),
橢圓:4x2+y2-4=0
由直線l:y=kx+1代入橢圓方程得到:
(4+k2)x2+2kx-3=0,
x1+x2=-$\frac{2k}{4+{k}^{2}}$,y1+y2=$\frac{8}{4+{k}^{2}}$,
由$\overrightarrow{OP}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{OB}$)得:(x,y)=$\frac{1}{2}$(x1+x2,y1+y2),
即:x=-$\frac{k}{4+{k}^{2}}$,y=$\frac{4}{4+{k}^{2}}$
消去k得:4x2+y2-y=0
當(dāng)斜率不存在時(shí),AB的中點(diǎn)為坐標(biāo)原點(diǎn),也適合方程,
所以動(dòng)點(diǎn)P的軌跡方程為:4x2+y2-y=0.

點(diǎn)評(píng) 本小題主要考查平面向量的概念、直線方程的求法、橢圓的方程和性質(zhì)等基礎(chǔ)知識(shí),以及軌跡的求法與應(yīng)用、曲線與方程的關(guān)系等解析幾何的基本思想和綜合解題能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知a,b,c∈R+,滿足ab=1,c(a+b+c)=1,則c的最大值是$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=lnx+ax2+bx(其中a,b為常數(shù)且a≠0)在x=1處的切線與x軸平行.
(Ⅰ)當(dāng)b=-3時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)在(0,e]上的最大值為1,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若$\overrightarrow{a}$=(2,1,-$\sqrt{3}$),$\overrightarrow$=(-1,5,$\sqrt{3}$),則以$\overrightarrow{a}$,$\overrightarrow$為鄰邊的平行四邊形的面積為$2\sqrt{58}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.y=x-$\sqrt{1-4x}$的值域是{y|y≤$\frac{1}{4}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知角α的終邊經(jīng)過點(diǎn)P(-3,-4),則sinα=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖程序執(zhí)行完的結(jié)果是( 。
A.5,-1B.4,-6C.1,-3D.無正確答案

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足bcosA=(2c+a)cos(π-B)
(Ⅰ)求角B的大小;
(Ⅱ)若b=$\sqrt{21}$,△ABC的面積為$\sqrt{3}$,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若c=2,b=2$\sqrt{3}$,C=30°,則角B等于(
A.30°B.60°C.30°或60°D.60°或120°

查看答案和解析>>

同步練習(xí)冊(cè)答案