分析 (1)利用橢圓C過焦點(diǎn)$(0,\sqrt{3}),(0,-\sqrt{3})$,離心率為$\frac{{\sqrt{3}}}{2}$,求出c,a,可得b,即可求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)出直線l的方程,A,B的坐標(biāo),聯(lián)立直線與橢圓的方程,利用韋達(dá)定理表示出x1+x2,利用直線方程表示出y1+y2,然后利用$\overrightarrow{OP}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{OB}$)求得$\overrightarrow{OP}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{OB}$)的坐標(biāo),設(shè)出P的坐標(biāo),然后聯(lián)立方程消去參數(shù)k求得x和y的關(guān)系式,P點(diǎn)軌跡可得.
解答 解:(1)由題意,c=$\sqrt{3}$,$\frac{c}{a}$=$\frac{{\sqrt{3}}}{2}$,
∴a=2,
∴b=1,
∴橢圓C的標(biāo)準(zhǔn)方程為${x}^{2}+\frac{{y}^{2}}{4}$=1;
(2)設(shè)P(x,y)是所求軌跡上的任一點(diǎn),
①當(dāng)斜率存在時(shí),直線l的方程為y=kx+1,A(x1,y1),B(x2,y2),
橢圓:4x2+y2-4=0
由直線l:y=kx+1代入橢圓方程得到:
(4+k2)x2+2kx-3=0,
x1+x2=-$\frac{2k}{4+{k}^{2}}$,y1+y2=$\frac{8}{4+{k}^{2}}$,
由$\overrightarrow{OP}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{OB}$)得:(x,y)=$\frac{1}{2}$(x1+x2,y1+y2),
即:x=-$\frac{k}{4+{k}^{2}}$,y=$\frac{4}{4+{k}^{2}}$
消去k得:4x2+y2-y=0
當(dāng)斜率不存在時(shí),AB的中點(diǎn)為坐標(biāo)原點(diǎn),也適合方程,
所以動(dòng)點(diǎn)P的軌跡方程為:4x2+y2-y=0.
點(diǎn)評(píng) 本小題主要考查平面向量的概念、直線方程的求法、橢圓的方程和性質(zhì)等基礎(chǔ)知識(shí),以及軌跡的求法與應(yīng)用、曲線與方程的關(guān)系等解析幾何的基本思想和綜合解題能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 30°或60° | D. | 60°或120° |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com