13.在△ABC中,角A,B,C的對邊分別為a,b,c,若c=2,b=2$\sqrt{3}$,C=30°,則角B等于(
A.30°B.60°C.30°或60°D.60°或120°

分析 由已知及正弦定理可求得sinB=$\frac{bsinC}{c}$=$\frac{\sqrt{3}}{2}$,由范圍B∈(30°,180°)利用特殊角的三角函數(shù)值即可得解.

解答 解:∵c=2,b=2$\sqrt{3}$,C=30°,
∴由正弦定理可得:sinB=$\frac{bsinC}{c}$=$\frac{2\sqrt{3}×\frac{1}{2}}{2}$=$\frac{\sqrt{3}}{2}$,
∵b>c,可得:B∈(30°,180°),
∴B=60°或120°.
故選:D.

點評 本題主要考查了正弦定理,特殊角的三角函數(shù)值在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)橢圓C過焦點$(0,\sqrt{3}),(0,-\sqrt{3})$,離心率為$\frac{{\sqrt{3}}}{2}$,過點M(0,1)的直線l交橢圓C于點A、B,O是坐標(biāo)原點,點P滿足$\overrightarrow{OP}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{OB}$);求:
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{1,x∈Q}\\{0,x∈{∁}_{R}Q}\end{array}\right.$,其中R為實數(shù)集,Q為理數(shù)集,關(guān)于函數(shù)f(x)有如下四個命題:
①f(f(x))=0;
②函數(shù)f(x)是偶函數(shù);
③任取一個不為零的有理數(shù)T,f(x+T)=f(x)對任意的x恒成立;
④函數(shù)f(x)圖象上至少存在三個點A、B、C,使得△ABC為等邊三角形.
其中是真命題的序號是②③④(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若直線x+(1+m)y+m-2=0與直線2mx+4y+16=0沒有公共點,則m的值是(  )
A.-2B.1C.1或-2D.2或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)α,β是兩個不同的平面,m,n是兩條不同的直線,下列命題中正確的是( 。
A.若α⊥β,m?α,則m⊥βB.若α⊥β,m⊥α,則m∥β
C.若m∥α,α∩β=n,則m∥nD.若m∥α,m∥β,α∩β=n,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知直線x=$\frac{π}{4}$與直線x=$\frac{5π}{4}$是函數(shù)$f(x)=sin({ωx+φ})({ω>0,-\frac{π}{2}<φ<\frac{π}{2}})$的圖象的兩條相鄰的對稱軸.
(1)求ω,φ的值;
(2)若$α∈({-\frac{3π}{4},-\frac{π}{4}})$,f(α)=-$\frac{4}{5}$,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列函數(shù)中,既是奇函數(shù)又存在零點的是( 。
A.$y=cos({\frac{π}{2}-x})$B.$y=sin({\frac{π}{2}-x})$C.y=lnxD.$y=x+\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=log4(4x+1)+ax(a∈R).
(1)若f(x)是定義在R上的偶函數(shù),求a的值;
(2)若關(guān)于x的不等式f(x)+f(-x)≤2log4m對任意的x∈[0,2]恒成立,求正實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在梯形ABCD中,$\overrightarrow{AB}$=3$\overrightarrow{DC}$,則$\overrightarrow{BC}$等于( 。
A.-$\frac{2}{3}$$\overrightarrow{AB}$+$\overrightarrow{AD}$B.-$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{4}{3}$$\overrightarrow{AD}$C.-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AD}$D.-$\frac{2}{3}$$\overrightarrow{AB}$-$\overrightarrow{AD}$

查看答案和解析>>

同步練習(xí)冊答案