分析 由條件根據(jù)平面向量基本定理及其幾何意義,利用兩個(gè)向量坐標(biāo)形式的運(yùn)算法則求得 $\overrightarrow{a}$的坐標(biāo).
解答 解:由于平面向量$\overrightarrow{a}$=(2,3),向量$\overrightarrow{{e}_{1}}$=(2,0)和$\overrightarrow{{e}_{2}}$=(0,2)為基底,
設(shè)$\overrightarrow{a}$的坐標(biāo)為(x,y),由(2,3)=x(2,0)+y(0,2)=(2x,2y),
可得$\left\{\begin{array}{l}{2x=2}\\{2y=3}\end{array}\right.$,求得$\left\{\begin{array}{l}{x=1}\\{y=\frac{3}{2}}\end{array}\right.$,故$\overrightarrow{a}$=(1,$\frac{3}{2}$).
點(diǎn)評 本題主要考查平面向量基本定理及其幾何意義,兩個(gè)向量坐標(biāo)形式的運(yùn)算,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?a∈R,函數(shù)f(x)在定義域上單調(diào)遞增 | B. | ?a∈R,函數(shù)f(x)存在零點(diǎn) | ||
C. | ?a∈R,函數(shù)f(x)有最大值 | D. | ?a∈R,函數(shù)f(x)沒有最小值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4π | B. | 8π | C. | 12π | D. | 15π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com