分析 (Ⅰ)由正弦定理化簡已知等式可得sinBcosC+sinCcosB=2sinAcosB,整理可求cosB=$\frac{1}{2}$,結(jié)合B的范圍,即可求得B的值;
(Ⅱ)由已知及三角形面積公式可求c,由余弦定理即可求b的值.
解答 (本題滿分12分)
解:(Ⅰ)∵bcosC+ccosB=2acosB
∴sinBcosC+sinCcosB=2sinAcosB,…2分
∴sin(B+C)=2sinAcosB,
∵A+B+C=π,∴sinA=2sinAcosB,
∵sinA≠0,∴cosB=$\frac{1}{2}$,
∵0<B<π
∴B=$\frac{π}{3}$…6分
(Ⅱ)∵a=8,S=10$\sqrt{3}$,
∴S=$\frac{1}{2}acsinB=2\sqrt{3}c=10\sqrt{3}$,…9分
∴c=5
∵B=$\frac{π}{3}$
∴b2=a2+c2-2accosB=64$+25-2×8×5×\frac{1}{2}=49$,
∴b=7…12分.
點評 本題主要考查了正弦定理,余弦定理,三角函數(shù)恒等變換的綜合應(yīng)用,屬于基本知識的考查.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x0∈R,使得${e^{x_0}}≤0$ | B. | sin2x+$\frac{2}{sinx}$≥3(x≠kπ,k∈Z) | ||
C. | 函數(shù)f(x)=2x-x2有兩個零點 | D. | a>1,b>1是ab>1的充分不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\frac{12}{5}$ | C. | 6 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | a<c<b | C. | b<a<c | D. | b<c<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com