分析 (1)由a2+a3=10,a1•a4=16,聯(lián)立解方程組$\left\{\begin{array}{l}{{2a}_{1}+3d=10}\\{{{a}_{1}}^{2}+3{a}_{1}d=16}\end{array}\right.$,求得d和a1,求得數(shù)列{an}的通項公式;
(2)由題意可知n≥2時,an=$\frac{b_1}{3+1}+\frac{b_2}{{{3^2}+1}}+\frac{b_3}{{{3^3}+1}}+…+\frac{b_n}{{{3^n}+1}}$,an-1=$\frac{_{1}}{3+1}$+$\frac{_{2}}{{3}^{2}+1}$+$\frac{_{3}}{{3}^{3}+1}$+…+$\frac{_{n-1}}{{3}^{n-1}+1}$,兩式相減2=$\frac{_{n}}{{3}^{n}+1}$,求得bn的通項公式,當n=1時,驗證是否滿足;
(3)由(1),(2)代入求得數(shù)列{cn}的通項公式,利用“錯位相減法”及等差數(shù)列前n項和公式即可求得數(shù)列{cn}的前n項和Tn.
解答 解:(1)數(shù)列{an}是遞增的等差數(shù)列,d>0,
由題意可知:$\left\{\begin{array}{l}{{a}_{1}+d+{a}_{1}+2d=10}\\{{a}_{1}({a}_{1}+3d)=16}\end{array}\right.$,整理得:$\left\{\begin{array}{l}{{2a}_{1}+3d=10}\\{{{a}_{1}}^{2}+3{a}_{1}d=16}\end{array}\right.$,
解得$\left\{\begin{array}{l}{d=2}\\{{a}_{1}=2}\end{array}\right.$
數(shù)列{an}的通項公式an=2n;
(2)當n≥2時,an=$\frac{b_1}{3+1}+\frac{b_2}{{{3^2}+1}}+\frac{b_3}{{{3^3}+1}}+…+\frac{b_n}{{{3^n}+1}}$,
an-1=$\frac{_{1}}{3+1}$+$\frac{_{2}}{{3}^{2}+1}$+$\frac{_{3}}{{3}^{3}+1}$+…+$\frac{_{n-1}}{{3}^{n-1}+1}$,
兩式相減得:2=$\frac{_{n}}{{3}^{n}+1}$,
∴${b_n}=2({3^n}+1)$,
當n=1時,$\frac{_{1}}{3+1}$=a1=2,b1=8,成立,
∴數(shù)列{bn}的通項公式數(shù)列{bn}的通項公式${b_n}=2({3^n}+1)$;
(3)${c_n}=\frac{{{a_n}{b_n}}}{4}=n({3^n}+1)=n•{3^n}+n$,
Tn=c1+c2+c3+…+cn
=(1×3+2×32+3×33+…+n×3n)+(1+2+3+…+n),
令${H_n}=1×3+2×{3^2}+3×{3^3}+…+n•{3^n}$
則$3{H_n}=1×{3^2}+2×{3^3}+3×{3^4}+…+n•{3^{n+1}}$
兩式相減得:$-2{H_n}=3+{3^2}+{3^3}+…+{3^n}-n×{3^{n+1}}=\frac{{3({3^n}-1)}}{3-1}-n×{3^{n+1}}$,
∴${H_n}=\frac{{(2n-1)×{3^{n+1}}+3}}{4}$
∴${T_n}=\frac{{(2n-1)×{3^{n+1}}}}{4}+\frac{n(n+1)}{2}+\frac{3}{4}$.
點評 本題考查等差數(shù)列通項公式及前n項和公式,考查“錯位相減法”求數(shù)列前n項和,考查分析問題及解決問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | |a|>|b| | B. | lg(a-b)>0 | C. | ${({\frac{1}{2}})^a}<{({\frac{1}{2}})^b}$ | D. | 2a>3b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-1)∪(3,+∞) | B. | (-3,1) | C. | (-∞,-3)∪(1,+∞) | D. | (-1,3) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com