6.設(shè)函數(shù)f(x)=(x+k+1)$\sqrt{x-k}$,g(x)=$\sqrt{x-k+3}$,其中k>0.
(1)若k=1,解不等式f(x)<2g(x);
(2)求函數(shù)F(x)=f(x)-(x-k)g(x)的零點個數(shù).

分析 (1)代入k=1,化簡不等式轉(zhuǎn)化為不等式組求解即可.
(2)化簡函數(shù)的解析式,利用函數(shù)為0,通過分類討論求解函數(shù)的零點即可.

解答 解:(1)解由k=1,不等式f(x)<2g(x);
即(x+2)$\sqrt{x-1}$<2$\sqrt{x+2}$,變形等價于$\left\{\begin{array}{l}{x≥1}\\{\sqrt{(x+2)(x-1)}<2}\end{array}\right.$-----------------------------3分
解得1≤x<2.--------------------------------------------------5分
(2)函數(shù)F(x)=f(x)-(x-k)g(x)
=(x+k+1)$\sqrt{x-k}$-(x-k)$\sqrt{x-k+3}$
=$\sqrt{x-k}$[(x+k+1)-$\sqrt{(x-k)(x-k+3)}$],
令F(x)=0,所以x=k或x+k+1=$\sqrt{(x-k)(x-k+3)}$(x≥k).---------------------------------7分
由x+k+1=$\sqrt{(x-k)(x-k+3)}$(x≥k).
等價于$\left\{\begin{array}{l}{x≥k}\\{(4k-1)x=-5k-1}\end{array}\right.$--------------------------------------------------9分
當k=$\frac{1}{4}$時,此方程無解;--------------------------------------------------10分
當$k≠\frac{1}{4}$時,$x=\frac{-5k-1}{4k-1}$,$\frac{-5k-1}{4k-1}-k=\frac{-(2k+1)^{2}}{4k-1}$,
當k>$\frac{1}{4}$時,$\frac{-5k-1}{4k-1}<k$,所以此根不是原函數(shù)的零點,----------------------------------12分
當k$<\frac{1}{4}$且$k≠-\frac{1}{2}$時,此根為原函數(shù)的零點,當x=$-\frac{1}{2}$時,此根與k相等.--------------------------------------------------14分
故原函數(shù)的零點,當k<$\frac{1}{4}$且k$≠-\frac{1}{2}$時,原函數(shù)有兩個零點;
當k$≥\frac{1}{4}$或k=$-\frac{1}{2}$時,原函數(shù)有一個零點.--------------------------------------------------16分.

點評 本題考查函數(shù)的零點與方程的根的關(guān)系,無理不等式的解法,考查分類討論思想的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在遞增的等差數(shù)列{an}中,已知a2+a3=10,a1•a4=16
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足an=$\frac{b_1}{3+1}+\frac{b_2}{{{3^2}+1}}+\frac{b_3}{{{3^3}+1}}+…+\frac{b_n}{{{3^n}+1}}$,求數(shù)列{bn}的通項公式;
(3)令cn=$\frac{{{a_n}{b_n}}}{4}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在復(fù)平面內(nèi),復(fù)數(shù)$\frac{10i}{3+i}$的共軛復(fù)數(shù)對應(yīng)的點坐標為(1,-3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.復(fù)平面內(nèi),復(fù)數(shù)z=(i+2)(i2+i),則復(fù)數(shù)z對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若兩個正實數(shù)x,y滿足$\frac{1}{x}+\frac{2}{y}$=1,且不等式x+$\frac{y}{2}$<m2-3m有解,則實數(shù)m的取值范圍是(-∞,-1)∪(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=sin(3x+$\frac{π}{4}$)+$\sqrt{3}$cos(3x+$\frac{π}{4}$)的最小正周期是( 。
A.B.C.$\frac{2π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)x、y∈R+,且x≠y,a=$\frac{x+y}{2}$,b=$\sqrt{xy}$,c=$\frac{2}{\frac{1}{x}+\frac{1}{y}}$,則a,b,c的大小關(guān)系為(  )
A.a<b<cB.a>b>cC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知等差數(shù)列{an}滿足a1+a2+a3+…+a101=0,則有(  )
A.a1+a101>0B.a2+a100<0C.a3+a100≤0D.a51=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.一個幾何體的三視圖如圖所示,該幾何體的體積為( 。
A.$\frac{3}{4}$B.$\frac{\sqrt{6}}{4}$C.4$\sqrt{3}$D.4$\sqrt{6}$

查看答案和解析>>

同步練習(xí)冊答案