18.曲線y=x3-4x+8在點(1,5)處的切線的傾斜角為(  )
A.135°B.45°C.60°D.120°

分析 求出函數(shù)的導(dǎo)函數(shù),得出f'(1)=3-4=-1=k,得出結(jié)論.

解答 解:f(x)=x3-4x+8,
∴f'(x)=3x2-4,
∴f'(1)=3-4=-1=k
∴傾斜角為135°.
故選A.

點評 考查了導(dǎo)函數(shù)的意義,斜率的概念.屬于基礎(chǔ)題型,應(yīng)熟練掌握.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知兩點A(0,1),B(1,0),且|MA|=2|MB|,求證:點M的軌跡方程為(x-$\frac{4}{3}$)2+(y+$\frac{1}{3}$)2=$\frac{8}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知拋物線y2=2px(p>0)的焦點為F,準(zhǔn)線為l,A,B是拋物線上過F的兩個端點,設(shè)線段AB的中點M在l上的攝影為N,則$\frac{|MN|}{|AB|}$的值是(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x2-ax+2lnx.
(Ⅰ)若a=2,求曲線y=f(x)在點P(1,f(1))處的切線;
(Ⅱ)若函數(shù)y=f(x)在定義域上單調(diào)遞增,求實數(shù)a的取值范圍;
(Ⅲ)設(shè)f(x)有兩個極值點x1,x2,若${x_1}∈(0,\frac{1}{e}]$,且f(x1)≥t+f(x2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若直線ax-by=2(a>0,b>0)過圓x2+y2-4x+2y+1=0的圓心,則ab的最大值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知O為三角形ABC內(nèi)一點,且滿足$\overrightarrow{OA}$+λ$\overrightarrow{OB}$+(λ-1)$\overrightarrow{OC}$=$\overrightarrow{0}$.若△OAB的面積與△OAC的面積比值為$\frac{1}{3}$,則λ的值為( 。
A.$\frac{3}{2}$B.2C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若$\underset{lim}{n→∞}$an=p,則  (  )
A.an<pB.an>p
C.an=pD.an與p的大小關(guān)系不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知△ABC是銳角三角形,向量$\overrightarrow{m}$=(cos(A+$\frac{π}{3}$),sin(A+$\frac{π}{3}$)),$\overrightarrow{n}$=(cosB,sinB),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(Ⅰ)求A-B的值;
(Ⅱ)若cosB=$\frac{3}{5}$,AC=8,求BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知α為銳角,cosα=$\frac{1}{3}$,則sin($\frac{π}{4}$-α)=$\frac{\sqrt{2}-4}{6}$.

查看答案和解析>>

同步練習(xí)冊答案