A. | $\overrightarrow a=(1,0,-1),\overrightarrow b=(1,1,0),\overrightarrow c=(0,1,1)$ | B. | $\overrightarrow a=(1,0,0),\overrightarrow b=(0,1,-1),\overrightarrow c=(0,0,1)$ | ||
C. | $\overrightarrow a=(1,1,1),\overrightarrow b=(1,-1,0),\overrightarrow c=(1,0,1)$ | D. | $\overrightarrow a=(1,1,0),\overrightarrow b=(1,0,1),\overrightarrow c=(0,1,1)$ |
分析 利用向量共面定理可知:如果存在實(shí)數(shù)m,n使得$\overrightarrow{a}=m\overrightarrow+n\overrightarrow{c}$成立,則向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$共面.即可判斷出.
解答 解:利用向量共面定理可知:如果存在實(shí)數(shù)m,n使得$\overrightarrow{a}=m\overrightarrow+n\overrightarrow{c}$成立,則向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$共面.
經(jīng)過(guò)判定:對(duì)于A:$\overrightarrow{a}$=$\overrightarrow-\overrightarrow{c}$,而B(niǎo),C,D不滿足向量共面定理.
故選:A.
點(diǎn)評(píng) 本題考查了向量共面定理,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,1] | B. | (0,1] | C. | [1,+∞) | D. | [0,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,1) | B. | (1,2) | C. | (2,3) | D. | (3,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8πcm2 | B. | 7πcm2 | C. | 6πcm2 | D. | 5πcm2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(0,-\frac{{\sqrt{6}}}{6}),(0,\frac{{\sqrt{6}}}{6})$ | B. | $(-\frac{{\sqrt{6}}}{6},0),(\frac{{\sqrt{6}}}{6},0)$ | C. | (-1,0),(1,0) | D. | (0,-1)、(0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com