已知直線l、m、n與平面α、β,給出下列四個命題:
①若m∥l,n∥l,則m∥n           ②若m⊥α,m∥β,則α⊥β
③若m∥α,n∥α,則m∥n          ④若m⊥β,α⊥β,則m∥α 或m?α
其中假命題是( )
A.①
B.②
C.③
D.④
【答案】分析:根據(jù)題意,依次分析選項,①、用直線與直線的位置關系判斷.②、用長方體中的線線,線面,面面關系驗證.③、用長方體中的線線,線面,面面關系驗證.④、由用長方體中的線線,線面,面面關系驗證得到結論.
解答:解:①、根據(jù)平行于同一條直線的兩直線平行知結論正確;
②、用長方體驗證.如圖,設A1A為m,平面AC為α,平面B1C為β,顯然有m⊥α,m∥β,且得到α⊥β,正確;
③、可設A1B1為m,平面AC為α,B1C1為n,滿足選項C的條件但得不到m∥n,不正確;
④、可設A1A為m,平面AC為α,平面A1D或平面B1C為β,滿足選項C的條件且得到m∥α 或m?α,正確;
其中假命題是③.
故選C.
點評:本題主要考查空間內(nèi)兩直線,直線與平面,平面與平面間的位置關系,綜合性強,方法靈活,屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

5、已知直線l、m、n與平面α、β,給出下列四個命題:
①若m∥l,n∥l,則m∥n      ②若m⊥α,m∥β,則α⊥β
③若m∥α,n∥α,則m∥n      ④若m⊥β,α⊥β,則m∥α 或m?α
其中正確命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l、m、n 與平面α、β給出下列四個命題:
①若m∥l,n∥l,則m∥n;  
②若m⊥α,m∥β,則α⊥β;
③若m∥α,n∥α,則m∥n;
④若m⊥β,α⊥β,則m∥α
其中,正確命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l、m、n與平面α、β,則下列敘述錯誤的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l、m、n與平面α、β,給出下列四個命題:
①若m∥l,n∥l,則m∥n;
 ②若m⊥α,m∥β,則α⊥β;
③若m∥α,n∥α,則m∥n;
④若m⊥β,α⊥β,則m∥α 或m?α.
其中假命題是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l、m、n與平面α、β,給出下列四個命題:
①若m∥l,n∥l,則m∥n           
②若m⊥α,m∥β,則?α⊥β?
③若m∥α,n∥α,則m∥n         
 ④若m⊥β,α⊥β,則m∥α?
其中假命題是( 。

查看答案和解析>>

同步練習冊答案