12.底面半徑為1高為3的圓錐的體積為π.

分析 利用圓錐的體積公式,能求出結(jié)果.

解答 解:底面半徑為1高為3的圓錐的體積為:V=$\frac{1}{3}π×{1}^{2}×3$=π.
故答案為:π.

點評 本題考查圓錐的體積的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意體積公式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知與直線$x=-\frac{1}{4}$相切的動圓M與圓$C:{({x-\frac{1}{2}})^2}+{y^2}=\frac{1}{16}$外切.
(1)求圓心M的軌跡L的方程;
(2)若傾斜角為$\frac{π}{4}$且經(jīng)過點(2.0)的直線l與曲線L相交于兩點A、B,求證:OA⊥OB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在四棱錐P-ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,AB=2,BC=1,PA=3,AD=4,PA⊥底面ABCD,E是PD上一點,且CE∥平面PAB,則三棱錐C-ABE的體積為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知3sinα-cosα=0,7sinβ+cosβ=0,且0<α<$\frac{π}{2}$<β<π,則2α-β的值為( 。
A.$\frac{5π}{4}$B.-$\frac{π}{3}$C.$\frac{π}{4}$D.-$\frac{3}{4}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知曲線f(x)=ex-mx+1存在與直線y=ex垂直的切線,則實數(shù)m的取值范圍為($\frac{1}{e}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.“a=b”是“a2=b2”成立的充分不必要條件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分又不必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知圓C的內(nèi)接矩形的一條對角線上的兩個頂點坐標(biāo)分別為P(1,-2),Q(3,4).
(1)求圓C的方程; 
(2)若直線y=2x+b被圓C截得的弦長為$2\sqrt{5}$,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,點A,B是單位圓O上的兩點,A,B點分別在第一,而象限,點C是圓O與x軸正半軸的交點,若∠COA=60°,∠AOB=α,點B的坐標(biāo)為(-$\frac{3}{5}$,$\frac{4}{5}$).
(1)求sinα的值;
(2)已知動點P沿圓弧從C點到A點勻速運動需要2秒鐘,求動點P從A點開始逆時針方向作圓周運動時,點P的縱坐標(biāo)y關(guān)于時間t(秒)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.為了得到周期y=sin(2x+$\frac{π}{6}$)的圖象,只需把函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象( 。
A.向左平移$\frac{π}{4}$個單位長度B.向右平移$\frac{π}{4}$個單位長度
C.向左平移$\frac{π}{2}$個單位長度D.向右平移$\frac{π}{2}$個單位長度

查看答案和解析>>

同步練習(xí)冊答案