17.若不等式ax2+bx-2>0的解集為(-4,1),則a+b等于2.

分析 根據(jù)一元二次不等式與對應(yīng)方程的關(guān)系,利用根與系數(shù)的關(guān)系求出a、b的值,即可求出a+b.

解答 解:∵不等式ax2+bx-2>0的解集為(-4,1),
∴-4和1是ax2+bx-2=0的兩個(gè)根,
即$\left\{\begin{array}{l}{-4+1=-\frac{a}}\\{-4×1=\frac{-2}{a}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=\frac{3}{2}}\end{array}\right.$;
∴a+b=$\frac{1}{2}$+$\frac{3}{2}$=2.
故答案為:2.

點(diǎn)評 本題考查了一元二次不等式的解集與所對應(yīng)一元二次方程根的關(guān)系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知樣本x1,x2,…xm的平均數(shù)為$\overline x$,樣本y1,y2,…yn的平均數(shù)$\overline y$,若樣本x1,x2,…xm,y1,y2,…yn的平均數(shù)$\overline z$=α$\overline x$+(1-α)$\overline y$,其中0<α≤$\frac{1}{2}$,則m,n的大小關(guān)系為( 。
A.m<nB.m>nC.m≤nD.m≥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω,0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則f(π)的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若方程(m-1)x2+(3-m)y2=(m-1)(3-m)表示焦點(diǎn)在y軸上的橢圓,則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,1)B.(1,2)C.(2,3)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知m>0,n>0,且mn=81,則m+n的最小值是18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=sin2x-sin2(x-$\frac{π}{6}$),x∈R.
(1)求f(x)的單調(diào)區(qū)間.
(2)若關(guān)于x的方程2f(x)-m+1=0在區(qū)間[-$\frac{π}{3}$,$\frac{π}{4}$]上有兩個(gè)相異的實(shí)根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.中石化集團(tuán)通過與安哥拉國家石油公司合作,獲得了安哥拉深海油田區(qū)塊的開采權(quán),集團(tuán)在某些區(qū)塊隨機(jī)初步勘探了部分口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來布置井位進(jìn)行全面勘探.由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井.以節(jié)約勘探費(fèi)用.勘探初期數(shù)據(jù)資料見如表:
井號I123456
坐標(biāo)(x,y)(km)(2,30)(4,40)(5,60)(6,50)(8,70)(1,y)
鉆探深度(km)2456810
出油量(L)407011090160205
(Ⅰ)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為y=6.5x+a,求a,并估計(jì)y的預(yù)報(bào)值;
(Ⅱ)現(xiàn)準(zhǔn)備勘探新井7(1,25),若通過1、3、5、7號井計(jì)算出的$\widehatb,\widehata$的值與(I)中b,a的值差不超過10%,則使用位置最接近的已有舊井6(1,y),否則在新位置打開,請判斷可否使用舊井?
($\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n_x^{-2}}}},\widehata=\overline y-\widehatb\overline x,\sum_{i=1}^4{{x_{2i-1}}^2=94,\sum_{i=1}^4{{x_{2i-1}}{y_{2i-1}}=945}}$)
(Ⅲ)設(shè)出油量與勘探深度的比值k不低于20的勘探并稱為優(yōu)質(zhì)井,那么在原有的出油量不低于50L的井中任意勘察3口井,求恰有2口是優(yōu)質(zhì)井的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某運(yùn)動員射擊一次所得環(huán)數(shù)X的分布如下:
X0~678910
P00.20.30.30.2
現(xiàn)進(jìn)行兩次射擊,以該運(yùn)動員兩次射擊中最高環(huán)數(shù)作為他的成績,記為ξ.
(I)求該運(yùn)動員兩次都命中7環(huán)的概率;
(Ⅱ)求ξ的數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知sin4θ+cos4θ=1,則sinθ-cosθ=±1.

查看答案和解析>>

同步練習(xí)冊答案