已知n∈N*,數(shù)列{dn}滿足dn=,數(shù)列{an}滿足an=d1+d2+d3+…+d2n;又知數(shù)列{bn}中,b1=2,且對(duì)任意正整數(shù)m,n,b=b.
(1)求數(shù)列{an}和數(shù)列{bn}的通項(xiàng)公式;
(2)將數(shù)列{bn}中的第a1項(xiàng),第a2項(xiàng),第a3項(xiàng),……,第an項(xiàng),……,刪去后,剩余的項(xiàng)按從小到大的順序排成新數(shù)列{cn},求數(shù)列{cn}的前2 013項(xiàng)和.
解:(1)∵dn=,∴an=d1+d2+d3+…+d2n==3n
又由題知:令m=1,則b2=b=22,b3=b=23,…,bn=b=2n
若bn=2n,則b=2nm,b=2mn,所以b=b恒成立
若bn≠2n,當(dāng)m=1,b=b不成立,所以bn=2n.
(2)由題知將數(shù)列{bn}中的第3項(xiàng)、第6項(xiàng)、第9項(xiàng)……第3n項(xiàng)刪去后構(gòu)成的新數(shù)列{cn}中的奇數(shù)項(xiàng)與偶數(shù)項(xiàng)仍成等比數(shù)列,首項(xiàng)分別是b1=2,b2=4公比均是8,
T2 013=(c1+c3+c5+…+c2 013)+(c2+c4+c6+…+c2 012)
=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在區(qū)間[0,3]上任取一點(diǎn),則此點(diǎn)落在區(qū)間[2,3]上的概率是( ).
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知數(shù)列{an}是公差為1的等差數(shù)列,Sn是其前n項(xiàng)和,若S8是數(shù)列{Sn}中的惟一最小項(xiàng),則數(shù)列{an}的首項(xiàng)a1的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在等差數(shù)列{an}中,a3+a4+a5=84,a9=73.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)對(duì)任意m∈N*,將數(shù)列{an}中落入?yún)^(qū)間(9m,92m)內(nèi)的項(xiàng)的個(gè)數(shù)記為bm,求數(shù)列{bm}的前m項(xiàng)和Sm.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
公比不為1的等比數(shù)列{an}的前n項(xiàng)和為Sn,且-3a1,-a2,a3成等差數(shù)列,若a1=1,則S4=( )
A.-20 B.0 C.7 D.40
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
“λ<1”是“數(shù)列an=n2-2λn為遞增數(shù)列”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
將全體正整數(shù)自小到大一個(gè)接一個(gè)地順次寫(xiě)成一排,如第11個(gè)數(shù)字是0,則從左至右的第2 013個(gè)數(shù)字是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若點(diǎn)P(1,1)為圓(x-3)2+y2=9的弦MN的中點(diǎn),則弦MN所在直線方程為( )
A.2x+y-3=0 B.x-2y+1=0
C.x+2y-3=0 D.2x-y-1=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知圓C:x2+y2-2x+4y-4=0,問(wèn)是否存在斜率為1的直線l,使l被圓C截得的弦為AB,以AB為直徑的圓經(jīng)過(guò)原點(diǎn),若存在,寫(xiě)出直線l的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com