分析 求得函數(shù)的周期為1,再利用當(dāng)-1≤x≤1時,f(-x)=-f(x),得到f(1)=-f(-1),當(dāng)x<0時,f(x)=x3-1,得到f(-1)=-2,即可得出結(jié)論.
解答 解:∵當(dāng)x>$\frac{1}{2}$時,f(x+$\frac{1}{2}$)=f(x-$\frac{1}{2}$),
∴當(dāng)x>$\frac{1}{2}$時,f(x+1)=f(x),即周期為1.
∴f(6)=f(1),
∵當(dāng)-1≤x≤1時,f(-x)=-f(x),
∴f(1)=-f(-1),
∵當(dāng)x<0時,f(x)=x3-1,
∴f(-1)=-2,
∴f(1)=-f(-1)=2,
∴f(6)=2;
故答案為:2
點評 本題考查函數(shù)值的計算,考查函數(shù)的周期性,考查學(xué)生的計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i>2015? | B. | i>2014? | C. | i>1008? | D. | i>1007? |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 是減函數(shù) | B. | 是增函數(shù)或減函數(shù) | ||
C. | 是增函數(shù) | D. | 未必是增函數(shù)或減函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | π | B. | 2π | C. | 3π | D. | 4π |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com