10.已知數(shù)列{an}的中,a2=2,a2n=an+1,a2n+1=n-an,則{an}的前100項和為1287.

分析 由已知得a1=1,a2n+1+a2n=n+1,由此能求出{an}的前100項和.

解答 解:∵a2n=an+1,a2n+1=n-an
∴a2=a1+1=2,解得a1=1,
∴an=a2n-1,an=n-a2n+1,∴a2n+1+a2n=n+1,
∴a1+(a2+a3)+(a4+a5)+…+(a98+a99)=1+2+3+…+50=1275,
a100=a50+1=a25+2=12-a12+2=14-a6-1=13-a3-1=12-1+a1=12,
∴{an}的前100項和S100=1275+12=1287.
故答案為:1287.

點評 本題考查數(shù)列的前100項和的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意數(shù)列的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若復(fù)數(shù)Z1=2-i,Z2=1-3i,則復(fù)數(shù)$\frac{i}{Z_1}+\frac{Z_2}{5}$的虛部等于$-\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.圓O中,弦AB滿足|AB|=2,則$\overrightarrow{AB}$•$\overrightarrow{AO}$=(  )
A.2B.1C.$\frac{1}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在△ABC中,|$\overrightarrow{CA}$|=6,|$\overrightarrow{CB}$|=3,M為線段AB上的一點,且|$\overrightarrow{CM}$|=x•$\overrightarrow{CA}$+y•$\overrightarrow{CB}$,$\overrightarrow{BM}$=2$\overrightarrow{MA}$.
(1)求x,y的值.
(2)若$\overrightarrow{CM}$•$\overrightarrow{AB}$=-18,求$\overrightarrow{CA}$與$\overrightarrow{CB}$的夾角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)f(x)=log2(x+2).
(1)求f(x)≤2的x的取值范圍;
(2)記G(x)=log2(x+2)-$\frac{2}{x}$,直接寫出該函數(shù)在區(qū)間[2,3]上的單調(diào)性情況;
(3)若對于區(qū)間[2,3]上的每一個x的值,不等式f(x)>$\frac{2}{x}$+m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若函數(shù)y=2sin(x+θ)的圖象向右平移$\frac{π}{6}$個單位,再向上平移2個單位后,它的一條對稱軸是$x=\frac{π}{4}$,則θ的一個可能的值是(  )
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若a=0.30.3,b=0.33,c=log0.33,則a,b,c的大小順序是( 。
A.a<b<cB.c<a<bC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列是映射的是( 。
A.(1)(2)(3)B.(1)(2)(5)C.(1)(3)(5)D.(1)(2)(3)(5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.不等式|$\frac{2-x}{3}$|>1的解集是( 。
A.(-∞,-5)∪(-1,+∞)B.(-∞,-5)∪(1,+∞)C.(-∞,-1)∪(5,+∞)D.(-∞,1)∪(5,+∞)

查看答案和解析>>

同步練習(xí)冊答案