1.已知各項(xiàng)均不相等的等差數(shù)列{an}的前四項(xiàng)和S4=14,且a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn為數(shù)列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$前n項(xiàng)和,若Tn<λ2-$\frac{λ}{2}$對任意n∈N*恒成立,求實(shí)數(shù)λ的取值范圍.

分析 (1)通過$\left\{\begin{array}{l}{4{a}_{1}+\frac{4×3}{2}d=14}\\{({a}_{1}+2d)^{2}={a}_{1}•({a}_{1}+6d)}\end{array}\right.$,進(jìn)而計(jì)算即得結(jié)論;
(2)通過裂項(xiàng)可知$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,并項(xiàng)相加可知Tn=$\frac{1}{2}$-$\frac{1}{n+2}$,從而問題轉(zhuǎn)化為解不等式λ2-$\frac{λ}{2}$≥$\frac{1}{2}$,計(jì)算即得結(jié)論.

解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,
∵S4=14、a1,a3,a7成等比數(shù)列,
∴$\left\{\begin{array}{l}{4{a}_{1}+\frac{4×3}{2}d=14}\\{({a}_{1}+2d)^{2}={a}_{1}•({a}_{1}+6d)}\end{array}\right.$,
解得:d=1或d=0(舍),
∴a1=2,
∴數(shù)列{an}的通項(xiàng)公式an=a1+(n-1)d=2+n-1=n+1;
(2)∵an=n+1,
∴$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{n+1}$•$\frac{1}{n+2}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,
∴Tn=$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n+1}$-$\frac{1}{n+2}$=$\frac{1}{2}$-$\frac{1}{n+2}$,
∵Tn<λ2-$\frac{λ}{2}$對任意n∈N*恒成立,
∴λ2-$\frac{λ}{2}$大于等于Tn的最大值,即λ2-$\frac{λ}{2}$≥$\frac{1}{2}$,
∴(λ-1)(λ+$\frac{1}{2}$)≥0,
∴λ≥1或λ≤-$\frac{1}{2}$.

點(diǎn)評 本題考查學(xué)生靈活運(yùn)用等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式化簡求值,掌握等比數(shù)列的性質(zhì),掌握一元二次不等式的解法,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在△ABC中,若sinA:sinB:sinC=2:3:4,則△ABC是( 。
A.直角三角形B.鈍角三角形C.銳三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若向量$\overrightarrow{a}$=(2,3)與向量$\overrightarrow$=(-4,y)共線,則y=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面的一部分.過對稱軸的截口BAC是橢圓的一部分,燈絲位于橢圓的一個(gè)焦點(diǎn)F1上,片門位于另一個(gè)焦點(diǎn)F2上,由橢圓一個(gè)焦點(diǎn)F1發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個(gè)焦點(diǎn)F2.已知BC⊥F1F2,|F1B|=3m,|F1F2|=4cm,試建立適當(dāng)?shù)淖鴺?biāo)系,求截口BAC所在橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某人在C點(diǎn)測得某塔在南偏西80°,塔頂仰角為45°,此人沿南偏東40°方向前進(jìn)10米到D點(diǎn)測得塔頂A的仰角為30°,則塔高為( 。
A.15米B.5米C.10米D.12米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知數(shù)列{an}中,an=n(n-1),則56是這個(gè)數(shù)列的( 。
A.第9項(xiàng)B.第8項(xiàng)C.第7項(xiàng)D.第6項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.將正奇數(shù)排列如下表其中第i行第j個(gè)數(shù)表示aij(i∈N*,j∈N*),如a32=9,若aij=2011,則i+j=61.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知⊙O1的半徑為R,周長為C.
(1)在⊙O1內(nèi)任意作三條弦,其長分別是l1、l2、l3.求證:l1+l2+l3<C;
(2)如圖,在直角坐標(biāo)系xOy中,設(shè)⊙O1的圓心為O1(R,R).
①當(dāng)直線l:y=x+b(b>0)與⊙O1相切時(shí),求b的值;
②當(dāng)反比例函數(shù)y=$\frac{k}{x}$(k>0)的圖象與⊙O1有兩個(gè)交點(diǎn)時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=|x-1|+|x+2|
(1)解不等式f(x)≥5;
(2)對任意x∈R,f(x)≥a2-2a都成立,求實(shí)數(shù)a的范圍.

查看答案和解析>>

同步練習(xí)冊答案