分析 (1)求出導(dǎo)數(shù),利用f′(2)=24,求出m;
(2)對函數(shù)求導(dǎo),判斷其單調(diào)區(qū)間,計(jì)算2,-2和$\root{3}{2}$的函數(shù)值比較大小.
解答 解:(1)f'(x)=(x4+mx+5)'=4x3+m,有f′(2)=24得到4×8+m=24,解得m=-8;
(2)由(1)得f'(x)=4x3-8>0解得x>$\root{3}{2}$,所以函數(shù)在(-∞,$\root{3}{2}$)為減函數(shù),在($\root{3}{2}$,+∞)為增函數(shù),
所以f(x)的最小值為f($\root{3}{2}$)=$(\root{3}{2})^{4}-8×\root{3}{2}+5$=5-5$\root{3}{2}$,
f(2)=24-8×2+5=5,f(-2)=16=16+5=37,
所以f(x)在區(qū)間[-2,2]上的最大值37,最小值5-5$\root{3}{2}$.
點(diǎn)評 本題考查了導(dǎo)數(shù)的運(yùn)算以及利用導(dǎo)數(shù)求函數(shù)閉區(qū)間上的最值,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{5}{4}$,-1) | B. | (-1,-$\frac{3}{4}$) | C. | (-$\frac{5}{4}$,-$\frac{3}{4}$) | D. | (-$\frac{3}{4}$,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9π}{2}$ | B. | $\frac{9}{16}$π | C. | $\frac{27}{16}$π | D. | $\frac{27}{32}$π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 3 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com