1.已知$\frac{3π}{4}$<α<$\frac{5π}{4}$,cos(α+$\frac{π}{4}$)=-$\frac{3}{5}$,則sinα=$-\frac{\sqrt{2}}{10}$.

分析 依題意,利用同角三角函數(shù)間的關(guān)系式可求得sin($\frac{π}{4}$+α),再利用兩角差的正弦即可求得sinα的值.

解答 解:∵$\frac{3π}{4}$<α<$\frac{5π}{4}$,
∴π<α+$\frac{π}{4}$<$\frac{3}{2}$π,又cos($\frac{π}{4}$+α)=-$\frac{3}{5}$,
∴sin($\frac{π}{4}$+α)=-$\sqrt{1-{cos}^{2}(\frac{π}{4}+α)}$=$-\frac{4}{5}$,
∴sinα=sin[(α+$\frac{π}{4}$)-$\frac{π}{4}$]=sin($\frac{π}{4}$+α)cos$\frac{π}{4}$-cos($\frac{π}{4}$+α)sin$\frac{π}{4}$=$-\frac{4}{5}$×$\frac{\sqrt{2}}{2}$-(-$\frac{3}{5}$)×$\frac{\sqrt{2}}{2}$=$-\frac{\sqrt{2}}{10}$.
故答案為:$-\frac{\sqrt{2}}{10}$.

點(diǎn)評(píng) 本題考查兩角和與差的正弦、余弦函數(shù),考查同角三角函數(shù)間的關(guān)系式的應(yīng)用,考查運(yùn)算求解能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的兩個(gè)焦點(diǎn)為F1、F2,離心率為$\frac{{\sqrt{2}}}{2}$,直線l與橢圓相交于A、B兩點(diǎn),且滿足|AF1|+|AF2|=4$\sqrt{2},{K_{OA}}•{K_{OB}}=-\frac{1}{2}$,O為坐標(biāo)原點(diǎn).
(I)求橢圓的方程;
(Ⅱ)求$\overrightarrow{OA}•\overrightarrow{OB}$的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lnx|,x>0}\\{{x}^{2}+4x+1,x≤0}\end{array}\right.$,若關(guān)于x的方程f2(x)-bf(x)+c=0(b,c∈R)有8個(gè)不同的實(shí)數(shù)根,則b+c的取值范圍為( 。
A.(-∞,3)B.(0,3]C.[0,3]D.(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ax2-x+4,若函數(shù)g(x)=lgf(x)在區(qū)間[1,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.直線l∥平面α,直線m∥平面α,直線l與m相交于點(diǎn)P,且l與m確定的平面為β,則α與β的位置關(guān)系是( 。
A.相交B.平行C.異面D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知非零實(shí)數(shù)m使不等式|x-m|+|x+2m|≥|m||log2|m|對(duì)一切實(shí)數(shù)x恒成立.
(Ⅰ)求實(shí)數(shù)m的取值范圍M;
(Ⅱ)如果a,b∈M,求證:|$\frac{2a}{3}$+$\frac{4}$|<8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.試比較下列兩式的大小
(1)(a+3)(a-5)和(a+2)(a-4)
(2)($\sqrt{x}$-1)2與($\sqrt{x}$+1)2(其中x>0)
(3)(x2+y2)(x-y)與(x2-y2)(x+y)(其中x<y<0)
(4)(a2+b2)與2(a-b-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x4+mx+5,且f′(2)=24,
(1)求m的值;
(2)求f(x)在區(qū)間[-2,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知等差數(shù)列{an}前n項(xiàng)和為Sn,若a1=2015,$\frac{{S}_{12}}{12}$-$\frac{{S}_{10}}{10}$=-2,則S2015=2015.

查看答案和解析>>

同步練習(xí)冊(cè)答案