13.如果集合A={x|x=2kπ+π,k∈Z},B={x|x=4kπ+π,k∈Z},則( 。
A.A⊆BB.B⊆AC.A=BD.A∩B=ϕ

分析 由于2k+1,k∈Z表示所有的奇數(shù),4k+1,k∈Z表示奇中被4除余1的整數(shù),只是奇數(shù)的一部分,而A={x|x=(2k+1)π,k∈Z},B={x|x=(4k+1)π,k∈Z},從而可判斷集合A,B的關(guān)系.

解答 解:∵A={x|x=2kπ+π,k∈Z}={x|x=(2k+1)π,k∈Z},B={x|x=4kπ+π,k∈Z}={x|x=(4k+1)π,k∈Z},
而2k+1,k∈Z表示所有的奇數(shù),4k+1,k∈Z表示奇中被4除余1的整數(shù),只是奇數(shù)的一部分,
∴B⊆A.
故選:B.

點(diǎn)評(píng) 本題主要考查了集合的包含關(guān)系的判斷,解題的關(guān)鍵是弄清楚兩集合的元素代表了哪些數(shù),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知傾斜角為θ的直線,與直線x-3y+1=0垂直,則$\frac{2}{{3{{sin}^2}θ-{{cos}^2}θ}}$=( 。
A.$\frac{10}{3}$B.一$\frac{10}{3}$C.$\frac{10}{13}$D.一$\frac{10}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,某地要在矩形區(qū)域OABC內(nèi)建造三角形池塘OEF,E,F(xiàn)分別在AB,BC邊上,OA=5米,OC=4米,∠EOF=$\frac{π}{4}$,設(shè)CF=x,AE=y.
(1)試用解析式將y表示成x的函數(shù);
(2)求三角形池塘OEF面積S的最小值及此時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)$f(x)=kx+m,g(x)=lnx-\frac{1}{x}$.
(1)若函數(shù)f(x)-g(x)在區(qū)間(0,+∞)上減函數(shù),求k的取值范圍;
(2)當(dāng)k=2時(shí),若函數(shù)f(x)的圖象是函數(shù)g(x)的圖象的切線,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知cos2α=$\frac{4}{5}$,求sin2α,tan2α以及cos4α+sin4α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若集合A={x||x-1|<2},B={x|$\frac{x-2}{x+4}$<0},則A∩B=(-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.“a<2”是“實(shí)系數(shù)一元二次方程x2+ax+1=0有虛根”的(  )
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知全集U=R,集合A={x|x2-2ax-3a2<0},B={x|x2-2x-a2-2a<0}.
(1)當(dāng)a=12時(shí),求(∁UB)∩A;
(2)命題P:x∈A,命題q:x∈B,若q是P的必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.化簡(jiǎn)$\frac{2co{s}^{2}x-1}{2tan(\frac{π}{4}-x)si{n}^{2}(\frac{π}{4}+x)}$=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案