1.設(shè)$f(x)=kx+m,g(x)=lnx-\frac{1}{x}$.
(1)若函數(shù)f(x)-g(x)在區(qū)間(0,+∞)上減函數(shù),求k的取值范圍;
(2)當(dāng)k=2時,若函數(shù)f(x)的圖象是函數(shù)g(x)的圖象的切線,求m的值.

分析 (1)由題意可得f′(x)-g′(x)≤0在區(qū)間(0,+∞)上恒成立.即k≤$\frac{1}{x}$+$\frac{1}{{x}^{2}}$(x>0)恒成立,有二次函數(shù)的值域,即可得到所求k的范圍;
(2)由題意可得y=2x+m為g(x)=lnx-$\frac{1}{x}$的切線,設(shè)切點為(x0,y0),求出導(dǎo)數(shù),切線的斜率,解方程可得切點,進(jìn)而得到m的值.

解答 解:(1)函數(shù)f(x)-g(x)在區(qū)間(0,+∞)上減函數(shù),
即為f′(x)-g′(x)≤0在區(qū)間(0,+∞)上恒成立.
即k≤$\frac{1}{x}$+$\frac{1}{{x}^{2}}$(x>0)恒成立,
由$\frac{1}{x}$+$\frac{1}{{x}^{2}}$=($\frac{1}{x}$+$\frac{1}{2}$)2-$\frac{1}{4}$>0,可得k≤0,
即有k的取值范圍(-∞,0];
(2)由題意可得y=2x+m為g(x)=lnx-$\frac{1}{x}$的切線,
設(shè)切點為(x0,y0),g′(x)=$\frac{1}{x}$+$\frac{1}{{x}^{2}}$,
即有$\frac{1}{{x}_{0}}$+$\frac{1}{{{x}_{0}}^{2}}$=2,解得x0=1(負(fù)的舍去),
y0=ln1-1=-1,
即有m=y0-2x0=-1-2=-3.

點評 本題考查導(dǎo)數(shù)的運用:求切線的斜率和單調(diào)性,考查不等式恒成立問題的解法,注意運用參數(shù)分離,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知O為△ABC的外心,且$|{\overrightarrow{AB}}|=7,|{\overrightarrow{AC}}|=5$,則$\overrightarrow{AO}•\overrightarrow{BC}$的值為-12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖(1)所示,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分別為線段PC、PD、BC的中點,現(xiàn)將△PDC折起,使平面PDC⊥平面ABCD(圖(2)).
(1)求證:平面EFG∥平面PAB;
(2)若點Q是線段PB的中點,求證:PC⊥平面ADQ;
(3)求三棱錐C-EFG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,四邊形EFGH為四面體A-BCD的一個截面,若截面為平行四邊形,
(1)求證:AB∥平面EFGH;
(2)若AB⊥CD,求證:四邊形EFGH為矩形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=a-$\frac{2}{{2}^{x}+1}$
(1)求證:f(x)為增函數(shù);
(2)若f(x)為奇函數(shù),求f(x)的值域;
(3)在(2)成立的情況下,若g(x)=xf(x)-2m+5,在定義域內(nèi)總有g(shù)(x)≥0成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知數(shù)列{an}的各項均為正整數(shù),其前n項和為Sn,若an+1=$\left\{\begin{array}{l}{\frac{{a}_{n}}{2},}&{{a}_{n}是偶數(shù)}\\{{3a}_{n}+1,}&{{a}_{n}是奇數(shù)}\end{array}\right.$且a1為一奇數(shù),S3=29,則S2015=4725.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如果集合A={x|x=2kπ+π,k∈Z},B={x|x=4kπ+π,k∈Z},則( 。
A.A⊆BB.B⊆AC.A=BD.A∩B=ϕ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x-y+4≥0\\ x+y-2≤0\\ y-2≥0\end{array}\right.$,則z=y-2x的最大值是( 。
A.2B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(x,1),$\overrightarrow{u}$=$\overrightarrow{a}$+2$\overrightarrow$,$\overrightarrow{v}$=2$\overrightarrow{a}$-$\overrightarrow$.
(1)當(dāng)$\overrightarrow{u}$∥$\overrightarrow{v}$時,求x的值,并說明$\overrightarrow{u}$與$\overrightarrow{v}$同向還是反向;
(2)當(dāng)$\overrightarrow{u}$⊥$\overrightarrow{v}$時,求x的值.

查看答案和解析>>

同步練習(xí)冊答案