【題目】已知橢圓 )的兩個焦點為, ,離心率為,點, 在橢圓上, 在線段上,且的周長等于

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過圓 上任意一點作橢圓的兩條切線與圓交于點, ,求面積的最大值.

【答案】(1;(2取最大值.

【解析】試題分析:(1)由的周長為可得,由離心率,進(jìn)而的橢圓的標(biāo)準(zhǔn)方程;(2)先根據(jù)韋達(dá)定理證明兩切斜線斜率積為,進(jìn)而得兩切線垂直,得線段為圓的直徑, ,然后根據(jù)不等式及圓的幾何意義求的最大值.

試題解析:(1)由的周長為,得, ,由離心率,得, .所以橢圓的標(biāo)準(zhǔn)方程為:

2)設(shè),則

)若兩切線中有一條切線的斜率不存在,則, ,另一切線的斜率為0,從而.此時,

)若切線的斜率均存在,則,設(shè)過點的橢圓的切線方程為

代入橢圓方程,消并整理得:

依題意,

設(shè)切線的斜率分別為, ,從而,即

線段為圓的直徑,

所以,

當(dāng)且僅當(dāng)時, 取最大值4.由()()可得: 最大值是4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)從高三男生中隨機抽取100名學(xué)生,將他們的身高數(shù)據(jù)進(jìn)行整理,得到下側(cè)的頻率分布表

(Ⅰ)求出頻率分布表中①和②位置上相應(yīng)的數(shù)據(jù);

(Ⅱ)為了能對學(xué)生的體能做進(jìn)一步了解,該校決定在第3,4,5 組中用分層抽樣的方法抽取6 名學(xué)生進(jìn)行體能測試,求第3,4,5 組每組各應(yīng)抽取多少名學(xué)生進(jìn)行測試;

(Ⅲ)在(Ⅱ)的前提下,學(xué)校決定在6 名學(xué)生中隨機抽取2 名學(xué)生進(jìn)行引體向上測試,求第4 組中至少有一名學(xué)生被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】7人站成一排.(寫出必要的過程,結(jié)果用數(shù)字作答)

(1)甲、乙兩人相鄰的排法有多少種?

(2)甲、乙兩人不相鄰的排法有多少種?

(3)甲、乙、丙三人兩兩不相鄰的排法有多少種?

(4)甲、乙、丙三人至多兩人不相鄰的排法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:,…,,并整理得到如下頻率分布直方圖:

(1)從總體的400名學(xué)生中隨機抽取一人,估計其分?jǐn)?shù)小于70的概率;

(2)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計總體中分?jǐn)?shù)在區(qū)間內(nèi)的人數(shù);

(3)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等,試估計總體中男生和女生人數(shù)的比例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】長時間用手機上網(wǎng)嚴(yán)重影響著學(xué)生的身體健康,某校為了解兩班學(xué)生手機上網(wǎng)的時長,分別從這兩個班中隨機抽取5名同學(xué)進(jìn)行調(diào)查,將他們平均每周手機上網(wǎng)的時長作為樣本,繪制成莖葉圖如圖所示(圖中莖葉表示十位數(shù)字,葉表示個位數(shù)字).

1)分別求出圖中所給兩組樣本數(shù)據(jù)的平均值,并據(jù)此估計,哪個班的學(xué)生平均上網(wǎng)時間較長;

2)從班的樣本數(shù)據(jù)中隨機抽取一個不超過19的數(shù)據(jù)記為,從班的樣本數(shù)據(jù)中隨機抽取一個不超過21的數(shù)據(jù)記為,求的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)若函數(shù)有零點,求實數(shù)的取值范圍;

(2)若對任意的,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,的重心,.

1求證:平面;

2若側(cè)面底面,,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線

(1)若,過點的直線交曲線兩點,且,求直線的方程;

(2)若曲線表示圓時,已知圓與圓交于兩點,若弦所在的直線方程為, 為圓的直徑,且圓過原點,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1若函數(shù)有且只有一個極值點,求實數(shù)的取值范圍;

2對于函數(shù),,若對于區(qū)間上的任意一個,都有,則稱函數(shù)是函數(shù),在區(qū)間上的一個分界函數(shù).已知,,問是否存在實數(shù),使得函數(shù)是函數(shù),在區(qū)間上的一個分界函數(shù)?若存在,求實數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案