4.已知p:?x∈[$\frac{1}{4}$,$\frac{1}{2}$],2x<m(x2+1),q:函數(shù)f(x)=4x+2x+1+m-1存在零點,若“p且q”為真命題,則實數(shù)m的取值范圍是($\frac{4}{5}$,1).

分析 分別求出p,q為真時的m的范圍,取交集即可.

解答 解:已知p:?x∈[$\frac{1}{4}$,$\frac{1}{2}$],2x<m(x2+1),
故m>$\frac{2x}{{x}^{2}+1}$,
令g(x)=$\frac{2x}{{x}^{2}+1}$,則g(x)在[$\frac{1}{4}$,$\frac{1}{2}$]遞增,
故g(x)≤g($\frac{1}{2}$)=$\frac{4}{5}$,
故p為真時:m>$\frac{4}{5}$;
q:函數(shù)f(x)=4x+2x+1+m-1=(2x+1)2+m-2,
令f(x)=0,得2x=$\sqrt{2-m}$-1,
若f(x)存在零點,
則$\sqrt{2-m}$-1>0,解得:m<1,
故q為真時,m<1;若“p且q”為真命題,
則實數(shù)m的取值范圍是:($\frac{4}{5}$,1),
故答案為:($\frac{4}{5}$,1).

點評 本題考查了復合命題的判斷,考查函數(shù)恒成立問題以及指數(shù)函數(shù)的性質(zhì),是一道中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.函數(shù)y=$\frac{{e}^{x}+{e}^{-x}}{{e}^{x}-{e}^{-x}}$的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在四棱錐P-ABCE中,PA⊥底面ABCE,CD⊥AE,AC平分∠BAD,G為PC的中點,PA=AD=2,BC=DE,AB=3,CD=2$\sqrt{3}$,F(xiàn),M分別為BC,EG上一點,且AF∥CD.
(1)求$\frac{ME}{MG}$的值,使得CM∥平面AFG;
(2)求直線CE與平面AFG所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知動點M到定點F(1,0)和定直線x=4的距離之比為$\frac{1}{2}$,設(shè)動點M的軌跡為曲線C.
(1)求曲線C的方程;
(2)過點F作斜率不為0的任意一條直線與曲線C交于兩點A,B,試問在x軸上是否存在一點P(與點F不重合),使得∠APF=∠BPF,若存在,求出P點坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設(shè)a=cos50°cos127°+cos40°cos37°,b=$\frac{\sqrt{2}}{2}$(sin56°-cos56°),c=$\frac{1-ta{n}^{2}39°}{1+ta{n}^{2}39°}$,則a,b,c的大小關(guān)系是( 。
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知向量$\overrightarrow{a}$=(5,m),$\overrightarrow$=(2,-2)且($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$,則m=( 。
A.-9B.9C.6D.-6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知正項數(shù)列{an} 中,$\sqrt{{a}_{1}}$+$\sqrt{{a}_{2}}$+…+$\sqrt{{a}_{n}}$=$\frac{n(n+1)}{2}$(n∈N*),則數(shù)列{an}的通項公式為( 。
A.an=nB.an=n2C.an=$\frac{n}{2}$D.an=$\frac{{n}^{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知圓C的方程為x2+y2=1,直線l的方程為x+y=2,過圓C上任意一點P作與l夾角為45°的直線交l于A,則|PA|的最小值為(  )
A.$\frac{1}{2}$B.1C.$\sqrt{2}-1$D.$2-\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.自貢某工廠于2016年下半年對生產(chǎn)工藝進行了改造(每半年為一個生產(chǎn)周期),從2016年一年的產(chǎn)品中用隨機抽樣的方法抽取了容量為50的樣本,用莖葉圖表示(如圖).已知每個生產(chǎn)周期內(nèi)與其中位數(shù)誤差在±5范圍內(nèi)(含±5)的產(chǎn)品為優(yōu)質(zhì)品,與中位數(shù)誤差在±15范圍內(nèi)(含±15)的產(chǎn)品為合格品(不包括優(yōu)質(zhì)品),與中位數(shù)誤差超過±15的產(chǎn)品為次品.企業(yè)生產(chǎn)一件優(yōu)質(zhì)品可獲利潤20元,生產(chǎn)一件合格品可獲利潤10元,生產(chǎn)一件次品要虧損10元
(Ⅰ)求該企業(yè)2016年一年生產(chǎn)一件產(chǎn)品的利潤為10的概率;
(Ⅱ)是否有95%的把握認為“優(yōu)質(zhì)品與生產(chǎn)工藝改造有關(guān)”.
附:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步練習冊答案