20.在△ABC中,已知A=60°,AB=2,角A的平分線AD=$\frac{4\sqrt{3}}{3}$,則AC=4.

分析 由角平分線的性質(zhì)求出∠BAD=30°,由余弦定理求出BD,由正弦定理和特殊角的三角函數(shù)值求出∠ABD,由直角三角形的余弦函數(shù)求出AC的值.

解答 解:如圖所示:
∵A=60°,AB=2,角A的平分線AD=$\frac{4\sqrt{3}}{3}$,
∴在△ABD中,∠BAD=30°,由余弦定理得,
BD2=AB2+AD2-2•AB•AD•cos∠BAD
=4+$\frac{16}{3}-2×2×\frac{4\sqrt{3}}{3}×\frac{\sqrt{3}}{2}$=$\frac{4}{3}$,
則BD=$\frac{2\sqrt{3}}{3}$,
由正弦定理得$\frac{AD}{sin∠ABD}=\frac{BD}{sin∠BAD}$,
則sin∠ABD=$\frac{AD•sin∠BAD}{BD}$=$\frac{\frac{4\sqrt{3}}{3}×\frac{1}{2}}{\frac{2\sqrt{3}}{3}}$=1,∴∠ABD=90°,
在RT△ABC中,AC=$\frac{AB}{cos∠BAC}$=$\frac{2}{\frac{1}{2}}$=4,
故答案為:4.

點評 本題考查正弦定理和余弦定理的綜合應用,以及特殊角的三角函數(shù)值,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.下列選項中是函數(shù)f(x)=sinxcosx-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{2}$的零點的是( 。
A.$\frac{π}{3}$B.πC.$\frac{4π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.在△ABC中,若$|{\overrightarrow{BA}+\overrightarrow{BC}}|=|{\overrightarrow{BA}-\overrightarrow{BC}}|$,則△ABC一定是(  )
A.鈍角三角形B.銳角三角形C.直角三角形D.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.當a>b,且f(x)>0,則${∫}_{a}^$f(x)dx的值( 。
A.一定是正的
B.一定是負的
C.當a>b>0時是正的,當0>a>b時是負的
D.正、負都有可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知正方體的體積是64,則其外接球的表面積是( 。
A.32$\sqrt{3}$πB.192πC.48πD.無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.△ABC為鈍角三角形,三邊長分別為3,4,x,則x的取值范圍是(  )
A.(5,7)B.(1,$\sqrt{7}$)C.(1,$\sqrt{7}$)∪(5,7)D.($\sqrt{7}$,5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2+1.
(Ⅰ)求函數(shù)y=f(x)在(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)g(x)=lnx+$\frac{af′(x)}{{x}^{3}-x}$在(0,$\frac{1}{2}$)內(nèi)有極值,求實數(shù)a的取值范圍和函數(shù)g(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知命題p:函數(shù)y=x2+mx+1的圖象與x軸無交點,命題q:“橢圓$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{m}$=1的焦點在y軸上”,若 p或q為真,p且q為假,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知$\overrightarrow{a}$⊥$\overrightarrow$,且$\vec a$=(2,1),$\overrightarrow$=(x,2),則實數(shù)x=-1.

查看答案和解析>>

同步練習冊答案