分析 (Ⅰ)根據(jù)已知條件便可證明平面BCE∥平面PAD,從而便得到CE∥平面PAD;
(Ⅱ)首先分別以AB,AD,AP三直線為x,y,z軸,建立空間直角坐標(biāo)系,要使平面DEF⊥平面PCE,便有這兩平面的法向量垂直,設(shè)F(a,0,0),平面PCE的法向量為$\overrightarrow{m}=(x,y,z)$,根據(jù)$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{PC}=0}\\{\overrightarrow{m}•\overrightarrow{PE}=0}\end{array}\right.$即可求出$\overrightarrow{m}$,同樣的辦法表示出平面DEF的法向量$\overrightarrow{n}$,根據(jù)$\overrightarrow{m}•\overrightarrow{n}=0$即可求出a,從而求出$\frac{AF}{AB}$.
解答 解:(Ⅰ)證明:BE∥PA,PA?平面PAD,BE?平面PAD;
∴BE∥平面PAD;
同理,∵ABCD為正方形,∴BC∥AD,∴BC∥平面PAD;
又BC∩BE=B;
∴平面EBC∥平面PAD,CE?平面EBC;
∴CE∥平面PAD;
(Ⅱ)分別以邊AB,AD,AP所在直線為x,y,z軸,建立如圖所示空間直角坐標(biāo)系,則:
B(4,0,0),C(4,4,0),E(4,0,2),P(0,0,4),D(0,4,0);
∴$\overrightarrow{PC}=(4,4,-4)$,$\overrightarrow{PE}=(4,0,-2)$,$\overrightarrow{PD}=(0,4,-4)$;
設(shè)平面PCE的一個法向量為$\overrightarrow m=(x,y,z)$;
∴$\left\{{\begin{array}{l}{\overrightarrow m•\overrightarrow{PC}=0}\\{\overrightarrow m•\overrightarrow{PE}=0}\end{array}}\right.⇒\left\{{\begin{array}{l}{x+y-z=0}\\{2x-z=0}\end{array}}\right.$;
令x=1,則$\left\{{\begin{array}{l}{x=1}\\{y=1}\\{z=2}\end{array}}\right.$,∴$\overrightarrow m=(1,1,2)$;
可設(shè)F(a,0,0),則$\overrightarrow{FE}=(4-a,0,2)$,$\overrightarrow{DE}=(4,-4,2)$;
設(shè)平面DEF的一個法向量為$\overrightarrow n=(x,y,z)$,則$\left\{{\begin{array}{l}{\overrightarrow n•\overrightarrow{DE}=0}\\{\overrightarrow n•\overrightarrow{FE}=0}\end{array}}\right.⇒\left\{{\begin{array}{l}{2x-2y+z=0}\\{(4-a)x+2z=0}\end{array}}\right.$;
令x=2,則$\left\{{\begin{array}{l}{x=2}\\{y=\frac{a}{2}}\\{z=a-4}\end{array}}\right.$,∴$\overrightarrow n=(2,\frac{a}{2},a-4)$;
由平面DEF⊥平面PCE,得$\overrightarrow m•\overrightarrow n=0$,即$2+\frac{a}{2}+2a-8=0$,$a=\frac{12}{5}<4$;
∴點$F(\frac{12}{5},0,0)$;
∴$\frac{AF}{AB}=\frac{3}{5}$.
點評 考查線面平行、面面平行的判定定理,通過證明直線所在平面和另一平面平行來證明線面平行的方法,通過建立空間直角坐標(biāo)系,利用空間向量解決面面垂直問題的方法.以及平面法向量的概念及求法,兩非零向量垂直的充要條件.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,$\frac{1}{2}$] | B. | [0,$\frac{1}{3}$] | C. | [$\frac{1}{2}$,$\frac{\sqrt{2}}{2}$] | D. | [$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com