設(shè)函數(shù)f(x)=
3
sin(2x+φ)+cos(2x+φ)(|φ|<
π
2
),且其圖象關(guān)于直線x=0對稱,則( 。
A、y=f(x)的最小正周期為π,且在(0,
π
2
)上為增函數(shù)
B、y=f(x)的最小正周期為
π
2
,且在(0,
π
4
)上為增函數(shù)
C、y=f(x)的最小正周期為π,且在(0,
π
2
)上為減函數(shù)
D、y=f(x)的最小正周期為
π
2
,且在(0,
π
4
)上為減函數(shù)
考點:三角函數(shù)的周期性及其求法,三角函數(shù)中的恒等變換應(yīng)用,余弦函數(shù)的對稱性,函數(shù)y=Asin(ωx+φ)的圖象變換
專題:計算題,三角函數(shù)的圖像與性質(zhì)
分析:通過兩角和與差的三角函數(shù)化簡函數(shù)為一個角的一個三角函數(shù)的形式,求出函數(shù)的最小正周期,再由函數(shù)圖象關(guān)于直線x=0對稱,將x=0代入函數(shù)解析式中的角度中,并令結(jié)果等于kπ(k∈Z),再由φ的范圍,求出φ的度數(shù),代入確定出函數(shù)解析式,利用余弦函數(shù)的單調(diào)遞減區(qū)間確定出函數(shù)的得到遞減區(qū)間為[kπ,kπ+
π
2
](k∈Z),可得出(0,
π
2
)?[kπ,kπ+
π
2
](k∈Z),即可得到函數(shù)在(0,
π
2
)上為減函數(shù),進而得到正確的選項.
解答: 解:∵f(x)=
3
sin(2x+φ)+cos(2x+φ)
=2[
3
2
sin(2x+φ)+
1
2
cos(2x+φ)]
=2sin(2x+φ+
π
6
),
∴ω=2,
∴T=
2
=π,
又函數(shù)圖象關(guān)于直線x=0對稱,
∴φ+
π
6
=kπ+
π
2
(k∈Z),
即φ=kπ+
π
3
(k∈Z),
又|φ|<
π
2
,
∴φ=
π
3
,
∴f(x)=2cos2x,
令2kπ≤2x≤2kπ+π(k∈Z),
解得:kπ≤x≤kπ+
π
2
(k∈Z),
∴函數(shù)的遞減區(qū)間為[kπ,kπ+
π
2
](k∈Z),
又(0,
π
2
)?[kπ,kπ+
π
2
](k∈Z),
∴函數(shù)在(0,
π
2
)上為減函數(shù),
則y=f(x)的最小正周期為π,且在(0,
π
2
)上為減函數(shù).
故選:C.
點評:本題考查了兩角和與差的三角函數(shù),三角函數(shù)的周期性及其求法,余弦函數(shù)的對稱性,余弦函數(shù)的單調(diào)性,以及兩角和與差的余弦函數(shù)公式,其中將函數(shù)解析式化為一個角的余弦函數(shù)是本題的突破點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線xsinθ+ycosθ=1與圓(x-1)2+y2=9的公共點的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個頂點A(-1,0),B(1,0),C(3,2),其外接圓為⊙H.
(1)若直線l過點C,且被⊙H截得的弦長為2,求直線l的方程;
(2)對于線段BH上的任意一點P,若在以C為圓心的圓上都存在不同的兩點M,N,使得點M是線段PN的中點,求⊙C的半徑r的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由恒等式:
1+2
1+3
1+4
1+5
1+…
=3
.可得
1+3
1+4
1+5
1+6
1+…
=
 
;進而還可以算出
1+4
1+5
1+6
1+7
1+…
1+5
1+6
1+7
1+8
1+…
的值,并可歸納猜想得到
1+n
1+(n+1)
1+(n+2)
1+(n+3)
1+…
=
 
.(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域是R,值域是(0,+∞),對于任意實數(shù)m,n,恒有f(m+n)=f(m)•f(n),且當(dāng)x<0時,0<f(x)<1.
(Ⅰ)求證:f(0)=1,且當(dāng)x>0時,有f(x)>1;
(Ⅱ)證明對于任意實數(shù)m,n,恒有f(m-n)=
f(m)
f(n)
,并判斷f(x)在R上的單調(diào)性;
(Ⅲ)集合A={(x,y)|f(x2)•f(y2)<f(1)},集合B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=φ,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a為實數(shù),函數(shù)F(x)=
x3-ax2+a2x     (x>a)
1
3
x3+ax2-a2x    (x≤a)
的導(dǎo)函數(shù)為g(x).
(Ⅰ) 求函數(shù)g(x)的解析式;
(Ⅱ)求函數(shù)g(x)的最小值;
(Ⅲ)當(dāng)x>a時,求函數(shù)f(x)=F(x)-x的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知線段AC=16cm,先截取AB=4cm作為長方體的高,再將線段BC任意分成兩段作為長方體的長和寬,則長方體的體積超過128cm3的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(1+ax)6的展開式中,含x3項的系數(shù)等于160,則實數(shù)a=
 

查看答案和解析>>

同步練習(xí)冊答案