【題目】如圖,兩條相交線段、的四個(gè)端點(diǎn)都在橢圓上,其中直線的方程為,直線的方程為.

(1)若,,求的值;

(2)探究:是否存在常數(shù),當(dāng)變化時(shí),恒有?

【答案】(1);(2)存在,見(jiàn)解析

【解析】

1)當(dāng)時(shí),聯(lián)立方程組求得,根據(jù),利用,列出方程,即可求解;

2)設(shè),由,得,利用韋達(dá)定理,結(jié)合橢圓的對(duì)稱(chēng)性,分類(lèi)討論,即可得到結(jié)論.

1)由題意,當(dāng)時(shí),聯(lián)立方程組,解得

因?yàn)?/span>,所以,

設(shè),則,化簡(jiǎn)得,

又由,聯(lián)立方程組,解得.

因?yàn)?/span>平分,所以(不適合題意),所以.

2)設(shè)

,整理得,

其中,

若存在常數(shù),當(dāng)變化時(shí),恒有

則由(1)可知只可能是,

①當(dāng)時(shí),取,等價(jià)于

,

,

,此式子恒成立,

所以存在常數(shù),當(dāng)變化時(shí),恒有;

②當(dāng)時(shí),取,由橢圓的對(duì)稱(chēng)性,同理可知結(jié)論也成立,

綜上可得,存在常數(shù),當(dāng)變化時(shí),恒有;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電動(dòng)車(chē)售后服務(wù)調(diào)研小組從汽車(chē)市場(chǎng)上隨機(jī)抽取20輛純電動(dòng)汽車(chē)調(diào)查其續(xù)駛里程(單次充電后能行駛的最大里程),被調(diào)查汽車(chē)的續(xù)駛里程全部介于50公里和300公里之間,將統(tǒng)計(jì)結(jié)果分成5組:,繪制成如圖所示的頻率分布直方圖.

1)求續(xù)駛里程在的車(chē)輛數(shù);

2)求續(xù)駛里程的平均數(shù);

3)若從續(xù)駛里程在的車(chē)輛中隨機(jī)抽取2輛車(chē),求其中恰有一輛車(chē)的續(xù)駛里程在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)命題p:函數(shù)fx=lgax2-x+16a)的定義域?yàn)?/span>R;命題q:不等式3x-9xa對(duì)任意xR恒成立.

(1)如果p是真命題,求實(shí)數(shù)a的取值范圍;

(2)如果命題pq為真命題且pq為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓:的左右焦點(diǎn)分別是,拋物線與橢圓有相同的焦點(diǎn),點(diǎn)為拋物線與橢圓在第一象限的交點(diǎn),且滿(mǎn)足

(1)求橢圓的方程;

(2)與拋物線相切于第一象限的直線,與橢圓交于兩點(diǎn),與軸交于點(diǎn),線段的垂直平分線與軸交于點(diǎn),求直線斜率的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且.

(1)若數(shù)列是等差數(shù)列,且,求實(shí)數(shù)的值;

(2)若數(shù)列滿(mǎn)足),且,求證:是等差數(shù)列;

(3)設(shè)數(shù)列是等比數(shù)列,試探究當(dāng)正實(shí)數(shù)滿(mǎn)足什么條件時(shí),數(shù)列具有如下性質(zhì):對(duì)于任意的),都存在,使得,寫(xiě)出你的探究過(guò)程,并求出滿(mǎn)足條件的正實(shí)數(shù)的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在線段的兩端點(diǎn)各置一個(gè)光源,已知光源,的發(fā)光強(qiáng)度之比為,則線段上光照度最小的一點(diǎn)到,的距離之比為______(光學(xué)定律:點(diǎn)的光照度與到光源的距離的平方成反比,與光源的發(fā)光強(qiáng)度成正比)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)為了檢查甲、乙兩條自動(dòng)包裝流水線的生產(chǎn)情況,隨機(jī)在這兩條流水線上各抽取件產(chǎn)品作為樣本稱(chēng)出它們的質(zhì)量(單位:毫克),質(zhì)量值落在的產(chǎn)品為合格品,否則為不合格品.如表是甲流水線樣本頻數(shù)分布表,如圖是乙流水線樣本的頻率分布直方圖.

產(chǎn)品質(zhì)量/毫克

頻數(shù)

(Ⅰ)以樣本的頻率作為概率,試估計(jì)從甲流水線上任取件產(chǎn)品,求其中不合格品的件數(shù)的數(shù)學(xué)期望.

甲流水線

乙流水線

總計(jì)

合格品

不合格品

總計(jì)

(Ⅱ)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為產(chǎn)品的包裝合格與兩條自動(dòng)包裝流水線的選擇有關(guān)?

(Ⅲ)由乙流水線的頻率分布直方圖可以認(rèn)為乙流水線生產(chǎn)的產(chǎn)品質(zhì)量服從正態(tài)分布,求質(zhì)量落在上的概率.

參考公式:

參考數(shù)據(jù):

參考公式:

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱錐(如圖1)的平面展開(kāi)圖(如圖2)中,四邊形為邊長(zhǎng)為的正方形,△ABE和△BCF均為正三角形,在三棱錐中:

(I)證明:平面 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)若點(diǎn)在棱上,滿(mǎn)足, ,點(diǎn)在棱上,且,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在點(diǎn)處的切線與y軸垂直.

1)若,求的單調(diào)區(qū)間;

2)若成立,求a的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案