A. | 向右平移$\frac{3π}{4}$個(gè)單位,再將所得圖象上每點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍 | |
B. | 向左平移$\frac{3π}{4}$個(gè)單位,再將所得圖象上每點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍 | |
C. | 每點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,再將所得圖象向右平移$\frac{3π}{4}$個(gè)單位 | |
D. | 每點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,再將所得圖象向左平移$\frac{3π}{4}$個(gè)單位 |
分析 利用誘導(dǎo)公式、函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.
解答 解:∵-cos($\frac{x}{2}$-$\frac{π}{4}$)=sin($\frac{1}{2}$x-$\frac{3π}{4}$),
∴將y=sinx的圖象向右平移$\frac{3π}{4}$個(gè)單位,可得y=sin(x-$\frac{3π}{4}$)的圖象,
再將所得圖象上每點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?倍 可得y=sin($\frac{1}{2}$x-$\frac{3π}{4}$)=sin($\frac{1}{2}$x-$\frac{π}{4}$-$\frac{π}{2}$)=-cos($\frac{x}{2}$-$\frac{π}{4}$) 的圖象,
故選:A.
點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式的應(yīng)用,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 0 | D. | 與c有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x+$\frac{1}{x}$ | B. | y=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$) | ||
C. | y=$\frac{{{x^2}+2}}{{\sqrt{{x^2}+1}}}$ | D. | y=x+$\frac{1}{x-1}$(x>1) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com