20.已知{an}為等比數(shù)列,a1>0,a4+a7=2,a5•a6=-8,則a1+a4+a7+a10=( 。
A.-7B.-5C.5D.7

分析 由已知得a4,a7是一元二次方程x2-2x-8=0的兩個(gè)根,解方程,得a4=-2,a7=4或a4=2,a7=-4,由a1>0,得${a}_{1}=1,{q}^{3}=-2$,由此能求出a1+a4+a7+a10的值.

解答 解:∵{an}為等比數(shù)列,a1>0,a4+a7=2,a5•a6=-8,
∴a4a7=-8,
∴a4,a7是一元二次方程x2-2x-8=0的兩個(gè)根,
解方程,得a4=-2,a7=4或a4=2,a7=-4,
解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{{q}^{3}=-2}\end{array}\right.$或$\left\{\begin{array}{l}{{a}_{1}=-1}\\{{q}^{3}=-2}\end{array}\right.$,
∵a1>0,∴${a}_{1}=1,{q}^{3}=-2$,
∴a1+a4+a7+a10=${a}_{1}+2+{a}_{1}{q}^{9}$=1+2-8=-5.
故選:B.

點(diǎn)評(píng) 本題考查等比數(shù)列中四項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)A是由一些實(shí)數(shù)構(gòu)成的集合,若a∈A,則$\frac{1}{1-a}$∈A,且1∉A
(1)若3∈A,求A;
(2)證明:若a∈A,則1-$\frac{1}{a}$∈A;
(3)A能否只有一個(gè)元素,若能,求出集合A,若不能,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)f(x)=-|x-2|+ex的零點(diǎn)所在的區(qū)間是( 。
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足sin$\frac{B}{2}$=$\frac{\sqrt{5}}{5}$,$\overrightarrow{BA}$•$\overrightarrow{BC}$=6.
(1)求△ABC的面積;
(2)若c=2,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若函數(shù)f(x)=(x-a)|x|(a∈R)存在反函數(shù)f-1(x),則f(1)+f-1(-4)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,C為線段AO上距A較近的一個(gè)三等分點(diǎn),D為線段CB上距C較近的一個(gè)三等分點(diǎn),則用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{OD}$=$\frac{4}{9}\overrightarrow{a}$$+\frac{1}{3}\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知集合A={x|x2-2x-3<0},B={x|y=ln(2-x)},定義A-B={x|x∈A,且x∉B},則A-B=( 。
A.(-1,2)B.[2,3)C.(2,3)D.(-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知三棱錐P-ABC的各棱長(zhǎng)均相等,O是△ABC的中心,D是PC的中點(diǎn),則直線PO與直線BD所成角的余弦值為(  )
A.$\frac{\sqrt{2}}{3}$B.$\frac{\sqrt{7}}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)數(shù)列{an}滿足:a1=1,(n+1)an+1=an+n,求a2005

查看答案和解析>>

同步練習(xí)冊(cè)答案