15.若函數(shù)f(x)=(x-a)|x|(a∈R)存在反函數(shù)f-1(x),則f(1)+f-1(-4)=-1.

分析 根據(jù)f(x)存在反函數(shù)f-1(x),得出f(x)是定義域上的單調(diào)函數(shù),求出a的值以及f(x)的解析式,即可求出f(1)+f-1(-4)的值.

解答 解:∵函數(shù)f(x)=(x-a)|x|=$\left\{\begin{array}{l}{{x}^{2}-ax,x≥0}\\{{-x}^{2}+ax,x<0}\end{array}\right.$,
且f(x)存在反函數(shù)f-1(x),
∴f(x)是定義域R的單調(diào)增函數(shù),
∴a=0,
∴f(x)=$\left\{\begin{array}{l}{{x}^{2},x≥0}\\{{-x}^{2},x<0}\end{array}\right.$,
∴f(1)+f-1(-4)=1+(-2)=-1.
故答案為:-1.

點(diǎn)評(píng) 本題考查了反函數(shù)的定義與性質(zhì)的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知集合A={x∈R|-2<x<1},B={x∈R|x2-2x<0},那么A∩B=( 。
A.(-2,0)B.(-2,1)C.(0,2)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知數(shù)列{an}滿(mǎn)足:a1=3,$\sqrt{{a_{n+1}}+1}-\sqrt{{a_n}+1}=1({n∈{N^+}})$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(-1)nan(n∈N+),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且(a+b)(sinA-sinB)=(c-b)sinC.
(1)若cosB=$\frac{3}{5}$,求cos(A+B)的值;
(2)若a=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在△ABC中,a:b:c=3:2:4,則sinC=( 。
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.$\frac{\sqrt{15}}{4}$D.-$\frac{\sqrt{15}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知{an}為等比數(shù)列,a1>0,a4+a7=2,a5•a6=-8,則a1+a4+a7+a10=( 。
A.-7B.-5C.5D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)f(x)=$\frac{1}{{\sqrt{{2^{x-1}}-1}}}$的定義域?yàn)椋ā 。?table class="qanwser">A.(0,1)B.(0,1]C.[1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.有以下程序:若輸入的值為3,5,則執(zhí)行此程序后輸出的值為( 。
A.3,5B.5,3C.3,3D.5,5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若點(diǎn)P(x,y)滿(mǎn)足$\left\{\begin{array}{l}{2x-y+2≥0}\\{x-2y+1≤0}\\{x+y-2≤0}\end{array}\right.$上,則x2+(y+1)2的最大值和最小值的積是$\frac{81}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案