8.若f(x)=$\frac{x-1}{x+1}$,則dy|x=1=$\frac{1}{2}$.

分析 根據(jù)導(dǎo)數(shù)的運算法則求導(dǎo),再代入值計算即可.

解答 解:f(x)=$\frac{x-1}{x+1}$=1-$\frac{2}{x+1}$,
∴f′(x)=$\frac{2}{(x+1)^{2}}$,
∴dy|x=1=f′(1)=$\frac{1}{2}$,
故答案為:$\frac{1}{2}$.

點評 本題考查了導(dǎo)數(shù)運算和導(dǎo)數(shù)值的求法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若點P(2,1)為圓(x-1)2+y2=25的弦AB的中點,則直線AB的方程為( 。
A.x+y-3=0B.2x-y-5=0C.2x+y=0D.x-y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知拋物線y2=4x截直線y=x+b所得弦長為4,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知平面內(nèi)點P(x,y)滿足$\left\{\begin{array}{l}{2x+3y≤12}\\{2x+y≥4}\\{y≥0}\end{array}\right.$,O為坐標(biāo)原點,則目標(biāo)函數(shù)z=$\frac{2y+6}{3x+9}$的取值范圍為[$\frac{2}{9}$,$\frac{14}{9}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在四邊形ABCD中,$\overrightarrow{AB}$=(4,-2),$\overrightarrow{AC}$=(7,4),$\overrightarrow{AD}$=(3,6),則四邊形ABCD的面積為30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.f(x)=$\left\{\begin{array}{l}{(3a-1)x+4a(x<1)}\\{{a}^{x}(x≥1)}\end{array}\right.$是定義在(-∞,+∞)上是減函數(shù),則a的取值范圍是( 。
A.[$\frac{1}{6}$,$\frac{1}{3}$)B.(0,$\frac{1}{3}$)C.(0,$\frac{1}{6}$]D.($\frac{1}{3}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=3sinωxcosωx+$\sqrt{3}$cos2ωx(ω>0)的最小正周期為$\frac{π}{2}$,將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個單位后,得到的函數(shù)g(x)=(  )
A.$\sqrt{3}$cos4x+$\frac{\sqrt{3}}{2}$B.-$\sqrt{3}$cos4x+$\frac{\sqrt{3}}{2}$C.$\sqrt{3}$sin(4x+$\frac{5}{6}$π)+$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$sin(4x-$\frac{5}{6}$π)+$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知復(fù)數(shù)z=3+$\frac{3-4i}{4+3i}$,則$\overline z$=( 。
A.3-iB.2-3iC.3+iD.2+3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.命題“?x0∈R,3x0+$\frac{1}{{3}^{{x}_{0}}}$≤1”的否定為( 。
A.?x0∈R,3x0+$\frac{1}{{3}^{{x}_{0}}}$>1B.?x0∈R,3x0+$\frac{1}{{3}^{{x}_{0}}}$≥1
C.?x∈R,3x+$\frac{1}{{3}^{{x}$>1D.?x∈R,3x+$\frac{1}{{3}^{{x}$<1

查看答案和解析>>

同步練習(xí)冊答案