8.如圖的程序框圖中輸出S的結(jié)果是25,則菱形判斷框內(nèi)應(yīng)填入的條件是( 。
A.i<9B.i≤9C.i>9D.i≥9

分析 分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是計(jì)算并輸出S的值,條件框內(nèi)的語句是決定是否結(jié)束循環(huán),模擬執(zhí)行程序即可得到答案.

解答 解:模擬執(zhí)行程序,可得
S=0,i=1
S=1,i=3
不滿足條件,S=4,i=5
不滿足條件,S=9,i=7
不滿足條件,S=16,i=9
不滿足條件,S=25,i=11
此時(shí),應(yīng)該滿足條件,退出循環(huán),輸出S的值為25.
則菱形判斷框內(nèi)應(yīng)填入的條件是i>9.
故選:C.

點(diǎn)評 算法是新課程中的新增加的內(nèi)容,也必然是新高考中的一個(gè)熱點(diǎn),應(yīng)高度重視.程序填空也是重要的考試題型,這種題考試的重點(diǎn)有:①分支的條件②循環(huán)的條件③變量的賦值④變量的輸出.其中前兩點(diǎn)考試的概率更大.此種題型的易忽略點(diǎn)是:不能準(zhǔn)確理解流程圖的含義而導(dǎo)致錯(cuò)誤,本題屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.log3(log82)等于( 。
A.-1B.1C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.$\overrightarrow{AB}-\overrightarrow{AC}-\overrightarrow{DB}$=( 。
A.$\overrightarrow{AD}$B.$\overrightarrow{AC}$C.$\overrightarrow{CD}$D.$\overrightarrow{BD}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知雙曲線${x^2}-\frac{y^2}{24}=1$的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P為雙曲線左支上一點(diǎn),且$|P{F_1}|=\frac{3}{5}|{F_1}{F_2}|$,則△PF1F2的面積是24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.經(jīng)過雙曲線x2-$\frac{{y}^{2}}{3}$=1的左焦點(diǎn)F1作斜率為2的弦AB,求:
(1)線段AB的長;
(2)設(shè)點(diǎn)F2為右焦點(diǎn),求△F2AB的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.若雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1的右頂點(diǎn)與橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)F1重合
(1)若以原點(diǎn)O為圓心,|OF1|為半徑的圓恰好與橢圓有且僅有2個(gè)交點(diǎn),求橢圓的方程;
(2)在(1)的條件下,過該橢圓右焦點(diǎn)的直線交橢圓于A,B兩點(diǎn),若雙曲線左頂點(diǎn)為M,直線AB的傾斜角θ,當(dāng)θ∈[60°,90°]時(shí),求$\overrightarrow{MA}$•$\overrightarrow{MB}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,圓O是△ABC的外接圓,點(diǎn)D是劣弧$\widehat{BC}$的中點(diǎn),連結(jié)AD并延長,與以C為切點(diǎn)的切線交于點(diǎn)P,求證:$\frac{PC}{PA}=\frac{BD}{AC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{8}$=1的實(shí)軸長為( 。
A.6B.3C.4$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知雙曲線的方程為x2-$\frac{{y}^{2}}{3}$=1,則該雙曲線的漸近線方程是( 。
A.y=±3xB.y=±$\frac{\sqrt{3}}{3}$xC.y=±$\sqrt{3}$xD.y=±2x

查看答案和解析>>

同步練習(xí)冊答案