【題目】某高中非畢業(yè)班學(xué)生人數(shù)分布情況如下表,為了了解這2000個學(xué)生的體重情況,從中隨機(jī)抽取160個學(xué)生并測量其體重數(shù)據(jù),根據(jù)測量數(shù)據(jù)制作了下圖所示的頻率分布直方圖.

(1)為了使抽取的160個樣品更具代表性,宜采取分層抽樣,請你給出一個你認(rèn)為合適的分層抽樣方案,并確定每層應(yīng)抽取的樣品個數(shù);

(2)根據(jù)頻率分布直方圖,求的值,并估計全體非畢業(yè)班學(xué)生中體重在內(nèi)的人數(shù);

(3)已知高一全體學(xué)生的平均體重為,高二全體學(xué)生的平均體重為,試估計全體非畢業(yè)班學(xué)生的平均體重.

【答案】(1)見解析;(2) ;1350人;(3) 平均體重為.

【解析】

1)考慮到體重應(yīng)與年級及性別均有關(guān),最合理的分層應(yīng)分為以下四層:高一男生,高一女生,高二男生,高二女生,高一男44人,高一女52人,高二男34人,高二女30人,由此能求出結(jié)果.(2)體重在之間的學(xué)生人數(shù)的率,從而,體重在,內(nèi)人數(shù)的頻率為0.675,由此能求出估計全體非畢業(yè)班學(xué)生體重在,內(nèi)的人數(shù).(3)設(shè)高一全體學(xué)生的平均體重為:,頻率為,高二全體學(xué)生的平均體重為,頻率為,由此能估計全體非畢業(yè)班學(xué)生的平均體重.

(1)考慮到體重應(yīng)與年級及性別均有關(guān),最合理的分層應(yīng)分為以下四層:

高一男生、高一女生、高二男生、高二女生

高一男:人,高一女:

高二男: ,高二女:

可能的方案一:按性別分為兩層,男生與女生

男生人數(shù):人,女生人數(shù):

可能的方案二:按年級分為兩層,高一學(xué)生與高二學(xué)生

高一人數(shù):人,高二人數(shù):

(2)體重在70-80之間學(xué)生人數(shù)的頻率:

體重在內(nèi)人數(shù)的頻率為:

∴估計全體非畢業(yè)班學(xué)生體重在內(nèi)的人數(shù)為:

(3)設(shè)高一全體學(xué)生的平均體重為,頻率為

高二全體學(xué)生的平均體重為,頻率為

則估計全體非畢業(yè)班學(xué)生平均體重為

答:估計全校非畢業(yè)班學(xué)生平均體重為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn),需另投入成本為,當(dāng)年產(chǎn)量不足80時,(萬元).當(dāng)年產(chǎn)量不小于80時,(萬元).每件商品售價為50.通過市場分析,該廠生產(chǎn)的商品能全部售完.

1)寫出年利潤(萬元)關(guān)于年產(chǎn)量)的函數(shù)解析式;

2)年產(chǎn)量為多少時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)同時滿足:(1)對于定義域上的任意,恒有;(2)對于定義域上的任意,當(dāng)時,恒有,則稱函數(shù)為“理想函數(shù)”.給出下列四個函數(shù)中:①; ②; ③;④,則被稱為“理想數(shù)”的有________(填相應(yīng)的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

當(dāng)時,畫出函數(shù)的圖像,并寫出使得的所有組成的集合.

若該函數(shù)的圖像都在軸的上方,求的取值范圍.

若該函數(shù)在區(qū)間上不單調(diào),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知幾何體,其中四邊形為直角梯形,四邊形為矩形, ,且 .

(1)試判斷線段上是否存在一點,使得平面,請說明理由;

(2)若,求該幾何體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線為參數(shù)),曲線為參數(shù)),以坐標(biāo)原點為極點, 軸的正半軸為極軸建立直角坐標(biāo)系.

(1)求曲線的極坐標(biāo)方程,直線的普通方程;

(2)把直線向左平移一個單位得到直線,設(shè)與曲線的交點為, 為曲線上任意一點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長為1的正方體中,點是對角線上的動點(點不重合),則下列結(jié)論正確的是____.

①存在點,使得平面平面

②存在點,使得平面;

的面積不可能等于;

④若分別是在平面與平面的正投影的面積,則存在點,使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為FF關(guān)于原點的對稱點為P,過F軸的垂線交拋物線于MN兩點,給出下列三個結(jié)論:

必為直角三角形;

②直線必與拋物線相切;

的面積為.其中正確的結(jié)論是___

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲廠以千克/小時的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求),每小時可獲得利潤是.

1)要使生產(chǎn)該產(chǎn)品小時獲得的利潤不低于元,求的取值范圍;

2)要使生產(chǎn)千克該產(chǎn)品獲得的利潤最大,問:甲廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤.

查看答案和解析>>

同步練習(xí)冊答案