7.若雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{^{2}}$=1(b>0)的一條漸近線為x+$\sqrt{2}$y=0,則離心率e=$\frac{\sqrt{6}}{2}$.

分析 求出雙曲線的漸近線方程,由條件解得b=$\sqrt{2}$,求得c,再由離心率公式計算即可得到所求值.

解答 解:雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{^{2}}$=1(b>0)的漸近線方程為y=±$\frac{2}$x,
由漸近線方程x+$\sqrt{2}$y=0,即y=-$\frac{\sqrt{2}}{2}$x,
可得$\frac{2}$=$\frac{\sqrt{2}}{2}$,解得b=$\sqrt{2}$,
c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{4+2}$=$\sqrt{6}$,
可得e=$\frac{c}{a}$=$\frac{\sqrt{6}}{2}$.
故答案為:$\frac{\sqrt{6}}{2}$.

點評 本題考查雙曲線的離心率的求法,注意運用漸近線方程和雙曲線方程的關(guān)系,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.用計算器計算下列各式的值(保留四位有效數(shù)字):
(1)(3.512×7.8-1)${\;}^{-\frac{4}{3}}$;
(2)$\frac{4.2{8}^{-\frac{2}{3}}×0.9{3}^{4}}{71.0{5}^{-1.13}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求數(shù)列{$\frac{2n-3}{{2}^{n-3}}$}前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知F1、F2為雙曲線$\frac{{x}^{2}}{16}$-y2=1的左右焦點,點Pi(xi,0)與Pi′(xi′,0)(i=1,2,3,…,10)滿足$\overrightarrow{{F}_{1}{P}_{i}}$+$\overrightarrow{{F}_{2}{P}_{i}′}$=$\overrightarrow{0}$,且xi<-4,過Pi做x軸的垂線交雙曲線的上半部分于Qi點,過Pi′做x軸的垂線交雙曲線的上半部分于Qi′點,若|F1Q1|+|F1Q2|+…+|F1Q10|=m,則|F1Q1′|+|F1Q2′|+…+|F1Q10′|=80+m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,圓C內(nèi)切于扇形AOB,$∠AOB=\frac{π}{3}$,若向扇形AOB內(nèi)隨機投擲600個點,則落入圓內(nèi)的點的個數(shù)估計值為( 。
A.100B.200C.400D.450

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為2,則漸近線方程為( 。
A.y=±2xB.y=±$\frac{\sqrt{3}}{3}$xC.y=±$\sqrt{3}$xD.y=±$\frac{1}{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.與雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線y=$\frac{a}$x的垂直的直線l交雙曲線于A,B兩點,若向量$\overrightarrow{OA}$+$\overrightarrow{OB}$與$\overrightarrow{m}$=(9,-$\frac{1}{3}$)平行,則雙曲線C的離心率等于 ( 。
A.$\frac{\sqrt{10}}{3}$B.$\frac{\sqrt{14}}{3}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖所示,雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點為F,左、右頂點為A,B過F作x軸的垂線與雙曲線交于C,D兩點,若AC⊥BD,則該雙曲線的離心率等于(  )
A.3B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知雙曲線以銳角△ABC的頂點B,C為焦點,且經(jīng)過點A,若△ABC內(nèi)角的對邊分別為a、b、c,且a=2,b=3,$\frac{csinA}{a}$=$\frac{\sqrt{3}}{2}$,則此雙曲線的離心率為( 。
A.$\frac{3+\sqrt{7}}{2}$B.$\frac{3-\sqrt{7}}{2}$C.3-$\sqrt{7}$D.3+$\sqrt{7}$

查看答案和解析>>

同步練習(xí)冊答案